NormalizeMets: assessing, selecting and implementing statistical methods for normalizing metabolomics data



In metabolomics studies, unwanted variation inevitably arises from various sources. Normalization, that is the removal of unwanted variation, is an essential step in the statistical analysis of metabolomics data. However, metabolomics normalization is often considered an imprecise science due to the diverse sources of variation and the availability of a number of alternative strategies that may be implemented.


We highlight the need for comparative evaluation of different normalization methods and present software strategies to help ease this task for both data-oriented and biological researchers.


We present NormalizeMets—a joint graphical user interface within the familiar Microsoft Excel and freely-available R software for comparative evaluation of different normalization methods. The NormalizeMets R package along with the vignette describing the workflow can be downloaded from The Excel Interface and the Excel user guide are available on


NormalizeMets allows for comparative evaluation of normalization methods using criteria that depend on the given dataset and the ultimate research question. Hence it guides researchers to assess, select and implement a suitable normalization method using either the familiar Microsoft Excel and/or freely-available R software. In addition, the package can be used for visualisation of metabolomics data using interactive graphical displays and to obtain end statistical results for clustering, classification, biomarker identification adjusting for confounding variables, and correlation analysis.


NormalizeMets is designed for comparative evaluation of normalization methods, and can also be used to obtain end statistical results. The use of freely-available R software offers an attractive proposition for programming-oriented researchers, and the Excel interface offers a familiar alternative to most biological researchers. The package handles the data locally in the user’s own computer allowing for reproducible code to be stored locally.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Creek, D. J., Jankevics, A., Burgess, K. E. V., Breitling, R., & Barrett, M. P. (2012). IDEOM: An Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics (Oxford, England), 28(7), 1048–1049.

    Article  CAS  Google Scholar 

  2. De Livera, A. M., Aho-Sysi, M., Jacob, L., Gagnon-Bartch, J., Castillo, S., Simpson, J., et al. (2015). Statistical methods for handling unwanted variation in metabolomics data. Analytical Chemistry, 87(7), 3606–3615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. De Livera, A. M., Dias, D. A., De Souza, D., Rupasinghe, T., Pyke, J., Tull, D., et al. (2012). Normalizing and integrating metabolomics data. Analytical Chemistry, 84(24), 10768–76.

    Article  PubMed  CAS  Google Scholar 

  4. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083.

    Article  PubMed  CAS  Google Scholar 

  5. Gagnon-Bartsch, J. A., Jacob, L., & Speed, T. P. (2013). Removing unwanted variation from high dimensional data with negative controls (pp. 1–112). Berkeley: Tech Reports from Dep Stat Univ California.

    Google Scholar 

  6. Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331(2), 283–95.

    Article  PubMed  CAS  Google Scholar 

  7. Kirwan, J., Weber, R., Broadhurst, D., & Viant, M. (2014). Direct infusion mass spectrometry metabolomics dataset: A benchmark for data processing and quality control. Scientific Data, 1, 1–13.

    Article  CAS  Google Scholar 

  8. Li, B., Tang, J., Yang, Q., Li, S., Cui, X., Li, Y., et al. (2017). Noreva: normalization and evaluation of ms-based metabolomics data. Nucleic Acids Research, 45, W162–W170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Redestig, H., Fukushima, A., Stenlund, H., Moritz, T., Arita, M., Saito, K., et al. (2009). Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data. Analytical Chemistry, 81(19), 7974–7980.

    Article  PubMed  CAS  Google Scholar 

  10. Roessner, U., Nahid, A., Chapman, B., Hunter, A., & Bellgard, M. (2011). Metabolomics—The combination of analytical biochemistry, biology, and informatics (2nd ed., Vol. 1). Amsterdam: Elsevier B.V.

    Google Scholar 

  11. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J. (2004). Metabolite fingerprinting: Detecting biological features by independent component analysis. Bioinformatics (Oxford, England), 20(15), 2447–2454.

    Article  CAS  Google Scholar 

  12. Spicer, R., Salek, R. M., Moreno, P., Cañueto, D., & Steinbeck, C. (2017). Navigating freely-available software tools for metabolomics analysis. Metabolomics, 13(9), 106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sysi-Aho, M., Katajamaa, M., Laxman, Y., & Oresic, M. (2007). Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 8, 93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T. A., Hill, L. R., et al. (2003). Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Analytical Chemistry, 75(18), 4818–4826.

    Article  PubMed  CAS  Google Scholar 

  15. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, 1–7.

    Article  CAS  Google Scholar 

Download references


Professor Terry Speed, Walter and Eliza Hall Institute of Medical Research.


Julie A. Simpson is supported by a National Health and Medical Research Council (NHMRC) Senior Research Fellowship (1104975). Alysha M. De Livera is supported by The University of Melbourne Research Fellowship. Darren J. Creek is supported by a National Health and Medical Research Council (NHMRC) Career Development Research Fellowship (1088855).

Author information



Corresponding author

Correspondence to Alysha M. De Livera.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Livera, A.M., Olshansky, G., Simpson, J.A. et al. NormalizeMets: assessing, selecting and implementing statistical methods for normalizing metabolomics data. Metabolomics 14, 54 (2018).

Download citation


  • Normalization
  • Statistical analysis
  • Software
  • R
  • Excel