, 14:39 | Cite as

1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics

  • Gesiane Tavares
  • Gabriela Venturini
  • Kallyandra Padilha
  • Roberto Zatz
  • Alexandre C. Pereira
  • Ravi I. Thadhani
  • Eugene P. Rhee
  • Silvia M. O. Titan
Original Article



Metabolomics allows exploration of novel biomarkers and provides insights on metabolic pathways associated with disease. To date, metabolomics studies on CKD have been largely limited to Caucasian populations and have mostly examined surrogate end points.


In this study, we evaluated the role of metabolites in predicting a primary outcome defined as dialysis need, doubling of serum creatinine or death in Brazilian macroalbuminuric DKD patients.


Non-targeted metabolomics was performed on plasma from 56 DKD patients. Technical triplicates were done. Metabolites were identified using Agilent Fiehn GC/MS Metabolomics and NIST libraries (Agilent MassHunter Work-station Quantitative Analysis, version B.06.00). After data cleaning, 186 metabolites were left for analyses.


During a median follow-up time of 2.5 years, the PO occurred in 17 patients (30.3%). In non-parametric testing, 13 metabolites were associated with the PO. In univariate Cox regression, only 1,5-anhydroglucitol (HR 0.10; 95% CI 0.01–0.63, p = .01), norvaline and l-aspartic acid were associated with the PO. After adjustment for baseline renal function, 1,5-anhydroglucitol (HR 0.10; 95% CI 0.02–0.63, p = .01), norvaline (HR 0.01; 95% CI 0.001–0.4, p = .01) and aspartic acid (HR 0.12; 95% CI 0.02–0.64, p = .01) remained significantly and inversely associated with the PO.


Our results show that lower levels of 1,5-anhydroglucitol, norvaline and l-aspartic acid are associated with progression of macroalbuminuric DKD. While norvaline and l-aspartic acid point to interesting metabolic pathways, 1,5-anhydroglucitol is of particular interest since it has been previously shown to be associated with incident CKD. This inverse biomarker of hyperglycemia should be further explored as a new tool in DKD.


Diabetic kidney disease Metabolomics 1,5-Anhydroglucitol 



FAPESP, Sao Paulo, Brazil.

Compliance with ethical standards

Conflict of interest

Ravi I. Thadhani is a consultant to Fresenius Medical Care North America. Gesiane Tavares, Gabriela Venturini, Kallyandra Padilha, Roberto Zatz, Alexandre C. Pereira, Eugene P. Rhee, Silvia M. O. Titan declares that they have no conflict of interest.

Ethical approval

The protocol was approved by the local Ethics Committees: the Universitary Hospital Ethics Committee (CEP-HU, Sao Paulo University) and the Ethics Committee for Analysis of Research Projects (CAPPesq, Hospital das Clínicas, Sao Paulo University).

Informed consent

Written informed consent was obtained from all participants and all research was performed in accordance with the 2013 Helsinki Declaration principles.


  1. Afshinnia, F., Rajendiran, T. M., Soni, T., Byun, J., Wernisch, S., Sas, K. M., et al. (2018). Impaired β-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. Journal of the American Society of Nephrology, 29(1), 295–306.PubMedGoogle Scholar
  2. Buse, J. B., Freeman, J. L., Edelman, S. V., Jovanovic, L., & McGill, J. B. (2003). Serum 1,5-anhydroglucitol (GlycoMark): A short-term glycemic marker. Diabetes Technology & Therapeutics, 5(3), 355–363.CrossRefGoogle Scholar
  3. Chen, H., Cao, G., Chen, D. Q., Wang, M., Vaziri, N. D., Zhang, Z. H., et al. (2016). Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression. Redox Biology, 10, 168–178.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen, H., Chen, L., Liu, D., Chen, D. Q., Vaziri, N. D., Yu, X. Y., et al. (2017). Combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism. Journal of Proteome Research, 16(4), 1566–1578.CrossRefPubMedGoogle Scholar
  5. Chen, H., Miao, H., Feng, Y. L., Zhao, Y. Y., & Lin, R. C. (2014). Metabolomics in dyslipidemia. Advances in Clinical Chemistry, 66, 101–119.CrossRefPubMedGoogle Scholar
  6. Cisek, K., Krochmal, M., Klein, J., & Mischak, H. (2016). The application of multi-.omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrology Dialysis Transplantation, 31(12), 2003–2011.CrossRefGoogle Scholar
  7. Dungan, K. M., Buse, J. B., Largay, J., Kelly, M. M., Button, E. A., Kato, S., et al. (2006). 1,5-Anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care, 29(6), 1214–1219.CrossRefPubMedGoogle Scholar
  8. Duranton, F., Lundin, U., Gayrard, N., Mischak, H., Aparicio, M., Mourad, G., et al. (2014). Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clinical Journal of the American Society of Nephrology, 9(1), 37–45.CrossRefPubMedGoogle Scholar
  9. El Assar, M., Angulo, J., Santos-Ruiz, M., Ruiz de Adana, J. C., Pindado, M. L., Sánchez-Ferrer, A., et al. (2016). Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. Journal of Physiology, 594(11), 3045–3060.CrossRefPubMedPubMedCentralGoogle Scholar
  10. El-Bassossy, H. M., El-Fawal, R., Fahmy, A., & Watson, M. L. (2013). Arginase inhibition alleviates hypertension in the metabolic syndrome. British Journal of Pharmacology, 169(3), 693–703.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fiehn, O. (2016). Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology, 114, 30.4.1–30.4.32.CrossRefGoogle Scholar
  12. Goek, O. N., Döring, A., Gieger, C., Heier, M., Koenig, W., Prehn, C., et al. (2012). Serum metabolite concentrations and decreased GFR in the general population. American Journal of Kidney Diseases, 60(2), 197–206.CrossRefPubMedGoogle Scholar
  13. Goek, O. N., Prehn, C., Sekula, P., Römisch-Margl, W., Döring, A., Gieger, C., et al. (2013). Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrology Dialysis Transplantation, 28(8), 2131–2138.CrossRefGoogle Scholar
  14. Hasslacher, C., & Kulozik, F. (2016). Effect of renal function on serum concentration of 1,5-anhydroglucitol in type 2 diabetic patients in chronic kidney disease stages I-III: A comparative study with HbA1c and glycated albumin. Journal of Diabetes, 8(5), 712–719.CrossRefPubMedGoogle Scholar
  15. Hirayama, A., Nakashima, E., Sugimoto, M., Akiyama, S., Sato, W., Maruyama, S., et al. (2012). Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Analytical and Bioanalytical Chemistry, 404(10), 3101–3109.CrossRefPubMedGoogle Scholar
  16. Hocher, B., & Adamski, J. (2017). Metabolomics for clinical use and research in chronic kidney disease. Nature Reviews Nephrology, 13(5), 269–284.CrossRefPubMedGoogle Scholar
  17. Ikeda, N., Hara, H., & Hiroi, Y. (2014). 1,5-Anhydro-D-glucitol predicts coronary artery disease prevalence and complexity. Journal of Cardiology, 64(4), 297–301.CrossRefPubMedGoogle Scholar
  18. Ikeda, N., Hara, H., & Hiroi, Y. (2015). Ability of 1,5-anhydro-d-glucitol values to predict coronary artery disease in a non-diabetic population. International Heart Journal, 56(6), 587–591.CrossRefPubMedGoogle Scholar
  19. Ishii, N., Ikenaga, H., Carmines, P. K., Aoki, Y., Ogawa, Z., Saruta, T., et al. (2004). High glucose augments arginase activity and nitric oxide production in the renal cortex. Metabolism, 53(7), 868–874.CrossRefPubMedGoogle Scholar
  20. Kameyama, T., & Inoue, H. (2014). Association of reduced levels of serum 1,5-anhydro-d-glucitol with carotid atherosclerosis in patients with type 2 diabetes. Journal of Diabetes and Its Complications, 28(3), 348–352.CrossRefPubMedGoogle Scholar
  21. Kim, W. J., Park, C. Y., Lee, K. B., Park, S. E., Rhee, E. J., Lee, W. Y., et al. (2012). Serum 1,5-anhydroglucitol concentrations are a reliable index of glycemic control in type 2 diabetes with mild or moderate renal dysfunction. Diabetes Care, 35(2), 281–286.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kishimoto, M., Yamasaki, Y., Kubota, M., Arai, K., Morishima, T., Kawamori, R., et al. (1995). 1,5-Anhydro-D-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care, 18(8), 1156–1159.CrossRefPubMedGoogle Scholar
  23. Kövamees, O., Shemyakin, A., Checa, A., Wheelock, C. E., Lundberg, J. O., Östenson, C. G., et al. (2016a). Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism 11, jc20162007.Google Scholar
  24. Kövamees, O., Shemyakin, A., Eriksson, M., Angelin, B., & Pernow, J. (2016b). Arginase inhibition improves endothelial function in patients with familial hypercholesterolaemia irrespective of their cholesterol levels. Journal of Internal Medicine, 279(5), 477–484.CrossRefPubMedGoogle Scholar
  25. Lee, J., Choi, J. Y., Kwon, Y. K., Lee, D., Jung, H. Y., Ryu, H. M., et al. (2016). Hwang GS. Changes in serum metabolites with the stage of chronic kidney disease: Comparison of diabetes and non-diabetes. Clinica Chimica Acta 459, 123–131.CrossRefGoogle Scholar
  26. Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F. 3rd, Feldman, H. I., et al. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612. (Erratum in: Ann Intern Med. 2011 Sep 20;155(6):408).CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liang, M., McEvoy, J. W., Chen, Y., Sharrett, A. R., & Selvin, E. (2016). Association of a biomarker of glucose peaks, 1,5-anhydroglucitol, with subclinical cardiovascular disease. Diabetes Care, 39(10), 1752–1759.CrossRefPubMedPubMedCentralGoogle Scholar
  28. McMahon, G. M., Hwang, S. J., Clish, C. B., Tin, A., Yang, Q., Larson, M. G., et al. (2017). Urinary metabolites along with common and rare genetic variations are associated with incident chronic kidney disease. Kidney International, 91(6), 1426–1435.CrossRefPubMedGoogle Scholar
  29. Mika, A., Wojtowicz, W., Ząbek, A., Młynarz, P., Chmielewski, M., Sledzinski, T., et al. (2018). Application of nuclear magnetic resonance spectroscopy for the detection of metabolic disorders in patients with moderate kidney insufficiency. Journal of Pharmaceutical and Biomedical Analysis, 149, 1–8.CrossRefPubMedGoogle Scholar
  30. Ming, X. F., Barandier, C., Viswambharan, H., Kwak, B. R., Mach, F., Mazzolai, L., et al. (2004). Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: Implications for atherosclerotic endothelial dysfunction. Circulation, 110(24), 3708–3714.CrossRefPubMedGoogle Scholar
  31. Ming, X. F., Rajapakse, A. G., Carvas, J. M., Ruffieux, J., & Yang, Z. (2009). Inhibition of S6K1 accounts partially for the anti-inflammatory effects of the arginase inhibitor L-norvaline. BMC Cardiovascular Disorders, 9, 12.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mutsaers, H. A., Engelke, U. F., Wilmer, M. J., Wetzels, J. F., Wevers, R. A., van den Heuvel, L. P., et al. (2013). Optimized metabolomic approach to identify uremic solutes in plasma of stage 3–4 chronic kidney disease patients. PLoS ONE, 8(8), e71199.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Niewczas, M. A., Mathew, A. V., Croall, S., Byun, J., Major, M., Sabisetti, V. S., et al. (2017). Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care, 40(3), 383–390.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Niewczas, M. A., Sirich, T. L., Mathew, A. V., Skupien, J., Mohney, R. P., Warram, J. H., et al. (2014). Uremic solutes and risk of end-stage renal disease in type 2 diabetes: Metabolomic study. Kidney International, 85(5), 1214–1224.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nkuipou-Kenfack, E., Duranton, F., Gayrard, N., Argilés, À, Lundin, U., Weinberger, K. M., et al. (2014). Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease. PLoS ONE, 9(5), e96955.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pokrovskiy, M. V., Korokin, M. V., Tsepeleva, S. A., Pokrovskaya, T. G., Gureev, V. V., Konovalova, E. A., et al. (2011). Arginase inhibitor in the pharmacological correction of endothelial dysfunction. International Journal of Hypertension, 2011, 515047.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rhee, E. P., Clish, C. B., Ghorbani, A., Larson, M. G., Elmariah, S., McCabe, E., et al. (2013). A combined epidemiologic and metabolomic approach improves CKD prediction. Journal of the American Society of Nephrology, 24(8), 1330–1338.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rhee, E. P., Clish, C. B., Wenger, J., Roy, J., Elmariah, S., Pierce, K. A., et al. (2016). Metabolomics of chronic kidney disease progression: A case-control analysis in the chronic renal insufficiency cohort study. American Journal of Nephrology, 43(5), 366–374.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Romero, M. J., Iddings, J. A., Platt, D. H., Ali, M. I., Cederbaum, S. D., Stepp, D. W., et al. (2012). Diabetes-induced vascular dysfunction involves arginase I. American Journal of Physiology-Heart and Circulatory Physiology, 302(1), H159–H166.CrossRefGoogle Scholar
  40. Saheki, T., Sato, Y., Takada, S., & Katsunuma, T. (1979). Regulation of urea synthesis in rat liver. Inhibition of urea synthesis by L-norvaline. The Journal of Biochemistry, 86(3), 745–750.CrossRefPubMedGoogle Scholar
  41. Sekula, P., Goek, O. N., Quaye, L., Barrios, C., Levey, A. S., Römisch-Margl, W., et al. (2016). A metabolome-wide association study of kidney function and disease in the general population. Journal of the American Society of Nephrology, 27(4), 1175–1188.CrossRefPubMedGoogle Scholar
  42. Selvin, E., Rawlings, A., Lutsey, P., Maruthur, N., Pankow, J. S., Steffes, M., et al. (2016). Association of 1,5-anhydroglucitol with cardiovascular disease and mortality. Diabetes, 65(1), 201–208.PubMedGoogle Scholar
  43. Selvin, E., Rawlings, A. M., Grams, M., Klein, R., Steffes, M., & Coresh, J. (2014). Association of 1,5-anhydroglucitol with diabetes and microvascular conditions. Clinical Chemistry, 60(11), 1409–1418.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Shah, V. O., Townsend, R. R., Feldman, H. I., Pappan, K. L., Kensicki, E., & Vander Jagt, D. L. (2013). Plasma metabolomic profiles in different stages of CKD. Clinical Journal of the American Society of Nephrology, 8(3), 363–370.CrossRefPubMedGoogle Scholar
  45. Sharma, K., Karl, B., Mathew, A. V., Gangoiti, J. A., Wassel, C. L., Saito, R., et al. (2013). Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. Journal of the American Society of Nephrology, 24(11), 1901–1912.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shemyakin, A., Kövamees, O., Rafnsson, A., Böhm, F., Svenarud, P., Settergren, M., et al. (2012). Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation, 126(25), 2943–2950.CrossRefPubMedGoogle Scholar
  47. Tazawa, S., Yamato, T., Fujikura, H., Hiratochi, M., Itoh, F., Tomae, M., et al. (2005). SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sciences, 76(9), 1039–1050. (Erratum in: Life Sci. 2010 Oct 9;87(15–16):514).CrossRefPubMedGoogle Scholar
  48. Titan, S. M., Vieira, J. M. Jr., Dominguez, W. V., Barros, R. T., & Zatz, R. (2011). ACEI and ARB combination therapy in patients with macroalbuminuric diabetic nephropathy and low socioeconomic level: A double-blind randomized clinical trial. Clinical Nephrology, 76(4), 273–283.CrossRefPubMedGoogle Scholar
  49. Toyohara, T., Akiyama, Y., Suzuki, T., Takeuchi, Y., Mishima, E., Tanemoto, M., et al. (2010). Metabolomic profiling of uremic solutes in CKD patients. Hypertension Research, 33(9), 944–952.CrossRefPubMedGoogle Scholar
  50. Vaarhorst, A. A., Verhoeven, A., Weller, C. M., Böhringer, S., Göraler, S., Meissner, A., et al. (2014). A metabolomic profile is associated with the risk of incident coronary heart disease. American Heart Journal, 168(1), 45–52.e7.CrossRefPubMedGoogle Scholar
  51. Vaisman, B. L., Andrews, K. L., Khong, S. M., Wood, K. C., Moore, X. L., Fu, Y., et al. (2012). Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice. PLoS ONE, 7(7), e39487.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Watanabe, M., Kokubo, Y., Higashiyama, A., Ono, Y., Miyamoto, Y., & Okamura, T. (2011). Serum 1,5-anhydro-D-glucitol levels predict first-ever cardiovascular disease: An 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis, 216(2), 477–483.CrossRefPubMedGoogle Scholar
  53. Weiss, R. H., & Kim, K. (2011). Metabolomics in the study of kidney diseases. Nature Reviews Nephrology, 8(1), 22–33.CrossRefPubMedGoogle Scholar
  54. Yu, B., Zheng, Y., Nettleton, J. A., Alexander, D., Coresh, J., & Boerwinkle, E. (2014). Serum metabolomic profiling and incident CKD among African Americans. Clinical Journal of the American Society of Nephrology, 9(8), 1410–1417.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhao, Y. Y. (2013). Metabolomics in chronic kidney disease. Clinica Chimica Acta, 422, 59–69.CrossRefGoogle Scholar
  56. Zhao, Y. Y., Cheng, X. L., Vaziri, N. D., Liu, S., & Lin, R. C. (2014). UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clinical Biochemistry, 47(15), 16–26.CrossRefPubMedGoogle Scholar
  57. Zhao, Y. Y., Miao, H., Cheng, X. L., Wei, F.. Lipidomics (2015). Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chemico-Biological Interactions, 240, 220–238.CrossRefPubMedGoogle Scholar
  58. Zhao, Y. Y., Vaziri, N. D., & Lin, R. C. (2015). Lipidomics: New insight into kidney disease. Advances in Clinical Chemistry, 68, 153–175.CrossRefPubMedGoogle Scholar
  59. Zhao, Y. Y., Wu, S. P., Liu, S., Zhang, Y., & Lin, R. C. (2014). Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chemico-Biological Interactions, 220, 181–192.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gesiane Tavares
    • 1
  • Gabriela Venturini
    • 2
  • Kallyandra Padilha
    • 2
  • Roberto Zatz
    • 1
  • Alexandre C. Pereira
    • 2
  • Ravi I. Thadhani
    • 3
    • 4
  • Eugene P. Rhee
    • 3
    • 5
  • Silvia M. O. Titan
    • 1
  1. 1.Nephrology DivisionUniversity of São Paulo Medical SchoolSão PauloBrazil
  2. 2.Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
  3. 3.Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonUSA
  4. 4.Cedars-Sinai Medical CenterLos AngelesUSA
  5. 5.Division of Endocrinology, Department of MedicineMassachusetts General HospitalBostonUSA

Personalised recommendations