DeltaMS: a tool to track isotopologues in GC- and LC-MS data

Abstract

Introduction

Stable isotopic labeling experiments are powerful tools to study metabolic pathways, to follow tracers and fluxes in biotic and abiotic transformations and to elucidate molecules involved in metal complexing.

Objective

To introduce a software tool for the identification of isotopologues from mass spectrometry data.

Methods

DeltaMS relies on XCMS peak detection and X13CMS isotopologue grouping and then analyses data for specific isotope ratios and the relative error of these ratios. It provides pipelines for recognition of isotope patterns in three experiment types commonly used in isotopic labeling studies: (1) search for isotope signatures with a specific mass shift and intensity ratio in one sample set, (2) analyze two sample sets for a specific mass shift and, optionally, the isotope ratio, whereby one sample set is isotope-labeled, and one is not, (3) analyze isotope-guided perturbation experiments with a setup described in X13CMS.

Results

To illustrate the versatility of DeltaMS, we analyze data sets from case-studies that commonly pose challenges in evaluation of natural isotopes or isotopic signatures in labeling experiment. In these examples, the untargeted detection of sulfur, bromine and artificial metal isotopic patterns is enabled by the automated search for specific isotopes or isotope signatures.

Conclusion

DeltaMS provides a platform for the identification of (pre-defined) isotopologues in MS data from single samples or comparative metabolomics data sets.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., et al. (2016). rmarkdown: Dynamic documents for R. https://CRAN.R-project.org/package=rmarkdown. Accessed 2 Feb 2018.

  2. Antoniewicz, M. R. (2013). 13C metabolic flux analysis: Optimal design of isotopic labeling experiments. Current Opinion in Biotechnology, 24(6), 1116–1121. https://doi.org/10.1016/j.copbio.2013.02.003.

    CAS  Article  PubMed  Google Scholar 

  3. Attali, D. (2016). Easily improve the user experience of your shiny apps in seconds. https://CRAN.R-project.org/package=shinyjs. Accessed 2 Feb 2018.

  4. Audi, G., & Wapstra, A. H. (1993). The 1993 atomic mass evaluation. Nuclear Physics A, 565(1), 1–65. https://doi.org/10.1016/0375-9474(93)90024-R.

    CAS  Article  Google Scholar 

  5. Audi, G., & Wapstra, A. H. (1995). The 1995 update to the atomic mass evaluation. Nuclear Physics A, 595(4), 409–480. https://doi.org/10.1016/0375-9474(95)00445-9.

    Article  Google Scholar 

  6. Baars, O., Morel, F. M., & Perlman, D. H. (2014). ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS. Analytical Chemistry, 86(22), 11298–11305. https://doi.org/10.1021/ac503000e.

    CAS  Article  PubMed  Google Scholar 

  7. Bailey, E. (2015). shinyBS: Twitter bootstrap components for shiny. https://CRAN.R-project.org/package=shinyBS. Accessed 2 Feb 2018.

  8. Banci, L., & Bertini, I. (2013). Metallomics and the cell: Some definitions and general comments. In L. Banci (Ed.), Metallomics and the Cell (pp. 1–13). Dordrecht: Springer.

    Google Scholar 

  9. Böcker, S., Letzel, M. C., Lipták, Z., & Pervukhin, A. (2009). SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics, 25(2), 218–224. https://doi.org/10.1093/bioinformatics/btn603.

    Article  PubMed  Google Scholar 

  10. Boiteau, R. M., & Repeta, D. J. (2015). An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics, 7(5), 877–884. https://doi.org/10.1039/c5mt00005j.

    CAS  Article  PubMed  Google Scholar 

  11. Bueschl, C., Kluger, B., Neumann, N. K. N., Doppler, M., Maschietto, V., Thallinger, G. G., et al. (2017). MetExtract II: A software suite for stable isotope-assisted untargeted metabolomics. Analytical Chemistry, 89(17), 9518–9526. https://doi.org/10.1021/acs.analchem.7b02518.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Bueschl, C., Krska, R., Kluger, B., & Schuhmacher, R. (2013). Isotopic labeling-assisted metabolomics using LC–MS. Analytical and Bioanalytical Chemistry, 405(1), 27–33. https://doi.org/10.1007/s00216-012-6375-y.

    CAS  Article  PubMed  Google Scholar 

  13. Capellades, J., Navarro, M., Samino, S., Garcia-Ramirez, M., Hernandez, C., Simo, R., et al. (2016). geoRge: A computational tool to detect the presence of stable isotope labeling in LC/MS-based untargeted metabolomics. Analytical Chemistry, 88(1), 621–628. https://doi.org/10.1021/acs.analchem.5b03628.

    CAS  Article  PubMed  Google Scholar 

  14. Castro-Falcón, G., Hahn, D., Reimer, D., & Hughes, C. C. (2016). Thiol probes to detect electrophilic natural products based on their mechanism of action. Chemistry & Biology, 11(8), 2328–2336. https://doi.org/10.1021/acschembio.5b00924.

    Google Scholar 

  15. Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., et al. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918–920. https://doi.org/10.1038/nbt.2377.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Chang, W. (2016). shinythemes: Themes for Shiny. https://CRAN.R-project.org/package=shinythemes. Accessed 2 Feb 2018.

  17. Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2017). shiny: Web application framework for R. https://CRAN.R-project.org/package=shiny. Accessed 2 Feb 2018.

  18. Chokkathukalam, A., Jankevics, A., Creek, D. J., Achcar, F., Barrett, M. P., & Breitling, R. (2013). mzMatch–ISO: An R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics, 29(2), 281–283. https://doi.org/10.1093/bioinformatics/bts674.

    CAS  Article  PubMed  Google Scholar 

  19. Chokkathukalam, A., Kim, D.-H., Barrett, M. P., Breitling, R., & Creek, D. J. (2014). Stable isotope-labeling studies in metabolomics: New insights into structure and dynamics of metabolic networks. Bioanalysis, 6(4), 511–524. https://doi.org/10.4155/bio.13.348.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Conley, C. J., Smith, R., Torgrip, R. J., Taylor, R. M., Tautenhahn, R., & Prince, J. T. (2014). Massifquant: Open-source Kalman filter-based XC-MS isotope trace feature detection. Bioinformatics, 30(18), 2636–2643. https://doi.org/10.1093/bioinformatics/btu359.

    CAS  Article  PubMed  Google Scholar 

  21. Dai, Z., & Locasale, J. W. (2017). Understanding metabolism with flux analysis: From theory to application. Metabolomic Engineering, 43, 94–102. https://doi.org/10.1016/j.ymben.2016.09.005.

    CAS  Article  Google Scholar 

  22. Deicke, M., Mohr, J. F., Bellenger, J. P., & Wichard, T. (2014). Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands. Analyst, 139(23), 6096–6099. https://doi.org/10.1039/c4an01461h.

    CAS  Article  PubMed  Google Scholar 

  23. Drexler, H. G. (1994). Leukemia cell lines: In vitro models for the study of chronic myeloid leukemia. Leukemia Research, 18(12), 919–927.

    CAS  Article  PubMed  Google Scholar 

  24. Dunn, W. B., Bailey, N. J., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130(5), 606–625. https://doi.org/10.1039/b418288j.

    CAS  Article  PubMed  Google Scholar 

  25. Filer, C. N. (1999). Isotopic fractionation of organic compounds in chromatography. Journal of Labelled Compounds and Radiopharmaceuticals, 42(2), 169–197.

    CAS  Article  Google Scholar 

  26. Gribble, G. W. (2015). Biological activity of recently discovered halogenated marine natural products. Marine Drugs, 13(7), 4044–4136. https://doi.org/10.3390/md13074044.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Grossmann, K., Niggeweg, R., Christiansen, N., Looser, R., & Ehrhardt, T. (2010). The Herbicide saflufenacil (KixorTM) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Science, 58, 1–9. https://doi.org/10.1614/WS-D-09-00004.1.

    CAS  Article  Google Scholar 

  28. Hegeman, A. D., Schulte, C. F., Cui, Q., Lewis, I. A., Huttlin, E. L., Eghbalnia, H., et al. (2007). Stable isotope assisted assignment of elemental compositions for metabolomics. Analytical Chemistry, 79(18), 6912–6921. https://doi.org/10.1021/ac070346t.

    CAS  Article  PubMed  Google Scholar 

  29. Hiller, K., Wegner, A., Weindl, D., Cordes, T., Metallo, C. M., Kelleher, J. K., et al. (2013). NTFD-a stand-alone application for the non-targeted detection of stable isotope-labeled compounds in GC/MS data. Bioinformatics, 29(9), 1226–1228. https://doi.org/10.1093/bioinformatics/btt119.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Huang, X., Chen, Y. J., Cho, K., Nikolskiy, I., Crawford, P. A., & Patti, G. J. (2014a). X13CMS. Accessed January 30, 2018 from http://pattilab.wustl.edu/software/x13cms/x13cms.php.

  31. Huang, X., Chen, Y. J., Cho, K., Nikolskiy, I., Crawford, P. A., & Patti, G. J. (2014b). X13CMS: Global tracking of isotopic labels in untargeted metabolomics. Analytical Chemistry, 86(3), 1632–1639. https://doi.org/10.1021/ac403384n.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289. https://doi.org/10.1021/ac202450g.

    CAS  Article  PubMed  Google Scholar 

  33. Kumar, B. (2011). Isotopic signatures. In V. P. Singh, P. Singh & U. K. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers (pp. 669–669). Dordrecht: Springer.

    Google Scholar 

  34. Levin, Y. (2011). The role of statistical power analysis in quantitative proteomics. Proteomics, 11(12), 2565–2567. https://doi.org/10.1002/pmic.201100033.

    CAS  Article  PubMed  Google Scholar 

  35. Lisovich, A., & Day, R. (2014). rChoiceDialogs: rChoiceDialogs collection. https://CRAN.R-project.org/package=rChoiceDialogs.

  36. Loos, M. (2016) EnviPick: Peak picking for high resolution mass spectrometry data, R package. Accessed January 30, 2018 from https://CRAN.R-project.org/package=enviPick.

  37. Millard, P., Portais, J. C., & Mendes, P. (2015). Impact of kinetic isotope effects in isotopic studies of metabolic systems. BMC Systems Biology, 9, 64. https://doi.org/10.1186/s12918-015-0213-8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Murray, K. K., Boyd, R. K., Eberlin, M. N., Langley, G. J., Li, L., & Naito, Y. (2013). Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(7), 1515–1609.

    CAS  Article  Google Scholar 

  39. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395. https://doi.org/10.1186/1471-2105-11-395.

    Article  PubMed  PubMed Central  Google Scholar 

  40. R-Core-Team (R Foundation for Statistical Computing). (2017). Accessed January 30, 2018 from https://www.R-project.org/.

  41. Rosman, K. J. R. (1999). Atomic weights of the elements 1997. Pure and Applied Chemistry, 71(8), 1593–1607.

    Article  Google Scholar 

  42. Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A., & Breitling, R. (2011). PeakML/mzMatch: A file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Analytical Chemistry, 83(7), 2786–2793. https://doi.org/10.1021/ac2000994.

    CAS  Article  PubMed  Google Scholar 

  43. Schoenheimer, R., & Rittenberg, D. (1938). The application of isotopes to the study of intermediary metabolism. Science, 87(2254), 221. https://doi.org/10.1126/science.87.2254.221.

    CAS  Article  PubMed  Google Scholar 

  44. Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T., Arppe, A., et al. (2017). DescTools: Tools for descriptive statistics. Accessed January 30, 2018 from https://cran.r-project.org/web/packages/DescTools/index.html.

  45. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006a). Accessed January 30, 2018 from https://bioconductor.org/packages/release/bioc/html/xcms.html.

  46. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006b). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. https://doi.org/10.1021/ac051437y.

    CAS  Article  PubMed  Google Scholar 

  47. Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039. https://doi.org/10.1021/ac300698c.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Tsednee, M., Huang, Y. C., Chen, Y. R., & Yeh, K. C. (2016). Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes. Scientific Reports, 6, 26785. https://doi.org/10.1038/srep26785.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Ueberschaar, N., Dahse, H.-M., Bretschneider, T., & Hertweck, C. (2013a). Rational design of an apoptosis-inducing photoreactive DNA intercalator. 52(24), 6185–6189. https://doi.org/10.1002/ange.201302439.

  50. Ueberschaar, N., Meyer, F., Dahse, H. M., & Hertweck, C. (2016). Bipiperidine conjugates as soluble sugar surrogates in DNA-intercalating antiproliferative polyketides. Chemical Communications, 52(27), 4894–4897. https://doi.org/10.1039/c6cc00890a.

    CAS  Article  PubMed  Google Scholar 

  51. Ueberschaar, N., Xu, Z., Scherlach, K., Metsä-Ketelä, M., Bretschneider, T., Dahse, H.-M., et al. (2013b). Synthetic remodeling of the chartreusin pathway to tune antiproliferative and antibacterial activities. Journal of the American Chemical Society, 135(46), 17408–17416. https://doi.org/10.1021/ja4080024.

    CAS  Article  PubMed  Google Scholar 

  52. Weindl, D., Wegner, A., & Hiller, K. (2016). MIA: Non-targeted mass isotopolome analysis. Bioinformatics, 32(18), 2875–2876. https://doi.org/10.1093/bioinformatics/btw317.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Wichard, T. (2016). Identification of metallophores and organic ligands in the chemosphere of the marine macroalga Ulva (Chlorophyta) and at Land-Sea Interfaces. Frontiers in Marine Science, 3, 131. https://doi.org/10.3389/fmars.2016.00131.

    Article  Google Scholar 

  54. Zhang, R., Sioma, C. S., Wang, S., & Regnier, F. E. (2001). Fractionation of mics. Analytical Chemistry, 73(21), 5142–5149. https://doi.org/10.1021/ac010583a.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Deutsche Forschungsgemeinschaft (CRC 1067 “AquaDiva” NU, GP and the CRC 1127 “ChemBioSys”; NU WS-H, JFM, TW, RG, GP), the Hans-Böckler-Stiftung (MD) and the Fonds der Chemischen Industrie (TW). The study was co-financed by the state of Thuringia (2015 FGI 0021) with means of the EU in the framework of the EFRE program. Kathleen Thume for the preparation of DMS for the SPME experiments with the GC-Orbitrap Felix Trottmann and Philipp Traber for initial considerations regarding the data analysis and the graphical user interface. Prof. Christian Hertweck for providing the dataset for case study 2 and Prof. Dr. Christoph Steinbeck for the helpful discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Thomas Wichard or Georg Pohnert.

Ethics declarations

Conflict of interest

The authors of this manuscript have no competing interests as defined by Springer; they do not have any other interests that influence the results and discussion of this paper.

Research involving with human and animal participants

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MP4 418,929 KB)

Supplementary material 1 (DOCX 4797 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baumeister, T.U.H., Ueberschaar, N., Schmidt-Heck, W. et al. DeltaMS: a tool to track isotopologues in GC- and LC-MS data. Metabolomics 14, 41 (2018). https://doi.org/10.1007/s11306-018-1336-x

Download citation

Keywords

  • DeltaMS
  • Computer-aided tool
  • Shiny
  • Stable isotope labeling
  • Isotope signature
  • Metallomics