Abstract
Introduction
Metabolite identification in biological samples using Nuclear Magnetic Resonance (NMR) spectra is a challenging task due to the complexity of the biological matrices.
Objectives
This paper introduces a new, automated computational scheme for the identification of metabolites in 1D 1H NMR spectra based on the Human Metabolome Database.
Methods
The methodological scheme comprises of the sequential application of preprocessing, data reduction, metabolite screening and combination selection.
Results
The proposed scheme has been tested on the 1D 1H NMR spectra of: (a) an amino acid mixture, (b) a serum sample spiked with the amino acid mixture, (c) 20 blood serum, (d) 20 human amniotic fluid samples, (e) 160 serum samples from publicly available database. The methodological scheme was compared against widely used software tools, exhibiting good performance in terms of correct assignment of the metabolites.
Conclusions
This new robust scheme accomplishes to automatically identify peak resonances in 1H-NMR spectra with high accuracy and less human intervention with a wide range of applications in metabolic profiling.
Similar content being viewed by others
References
Anderson, P. E., Mahle, D. A., Doom, T. E., Reo, N. V., DelRaso, N. J., & Raymer, M. L. (2010). Dynamic adaptive binning: an improved quantification technique for NMR spectroscopic data. Metabolomics, 7(2), 179–190. doi:10.1007/s11306-010-0242-7.
Anderson, P. E., Reo, N. V., DelRaso, N. J., Doom, T. E., & Raymer, M. L. (2008). Gaussian binning: A new kernel-based method for processing NMR spectroscopic data for metabolomics. Metabolomics, 4(3), 261–272. doi:10.1007/s11306-008-0117-3.
Chignola, F., Mari, S., Stevens, T. J., Fogh, R. H., Mannella, V., Boucher, W., & Musco, G. (2011). The CCPN metabolomics Project: A fast protocol for metabolite identification by 2D-NMR. Bioinformatics (Oxford, England), 27(6), 885–886. doi:10.1093/bioinformatics/btr013.
Davis, R. A., Charlton, A. J., Godward, J., Jones, S. A., Harrison, M., & Wilson, J. C. (2007). Adaptive binning: An improved binning method for metabolomics data using the undecimated wavelet transform. Chemometrics and Intelligent Laboratory Systems, 85(1), 144–154. doi:10.1016/j.chemolab.2006.08.014.
De Meyer, T., Sinnaeve, D., Van Gasse, B., Tsiporkova, E., Rietzschel, E. R., De Buyzere, M. L., et al. (2008). NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Analytical Chemistry, 80(10), 3783–3790. doi:10.1021/ac7025964.
Deng, L., Gu, H., Zhu, J., Nagana Gowda, G. A., Djukovic, D., Chiorean, E. G., Raftery, D. (2016). Combining NMR and LC/MS using backward variable elimination: Metabolomics analysis of colorectal cancer, polyps, and healthy controls. Analytical chemistry, 88(16), 7975–7983. doi:10.1021/acs.analchem.6b00885.
Domingo-Almenara, X., Brezmes, J., Vinaixa, M., Samino, S., Ramirez, N., Ramon-Krauel, M., et al. (2016). eRah: A computational tool integrating spectral deconvolution and alignment with quantification and identification of metabolites in GC/MS-based metabolomics. Analytical Chemistry, 88(19), 9821–9829. doi:10.1021/acs.analchem.6b02927.
Everett, J. R. (2015). A new paradigm for known metabolite identification in metabonomics/metabolomics: Metabolite identification efficiency. Computational and Structural Biotechnology Journal, 13, 131–144. doi:10.1016/j.csbj.2015.01.002.
Fischer, K., Kettunen, J., Würtz, P., Haller, T., Havulinna, A. S., Kangas, A. J., et al. (2014). Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons. PLoS Medicine, 11(2), e1001606. doi:10.1371/journal.pmed.1001606.
Fotakis, C., Zoga, M., Baskakis, C., Tsiaka, T., Boutsikou, T., Briana, D. D., et al. (2016). Investigating the metabolic fingerprint of term infants with normal and increased fetal growth. RSC Advances, 6(83), 79325–79334. doi:10.1039/C6RA12403H.
Gralka, E., Luchinat, C., Tenori, L., Ernst, B., Thurnheer, M., & Schultes, B. (2015). Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. American Journal of Clinical Nutrition, 102(6), 1313–1322. doi:10.3945/ajcn.115.110536.
Haddad, R. A., & Akansu, A. N. (1991). A class of fast Gaussian binomial filters for speech and image processing. IEEE Transactions on Signal Processing, 39(3), 723–727. doi:10.1109/78.80892.
Hao, J., Astle, W., De Iorio, M., & Ebbels, T. M. D. (2012). BATMAN—An R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics (Oxford, England), 28(15), 2088–2090. doi:10.1093/bioinformatics/bts308.
Hart, C. D., Vignoli, A., Tenori, L., Uy, G. L., Van To, T., Adebamowo, C., et al. (2017). Serum metabolomic profiles identify ER-positive early breast cancer patients at increased risk of disease recurrence in a multicenter population. Clinical Cancer Research, 23(6), 1422–1431. doi:10.1158/1078-0432.CCR-16-1153.
Jobard, E., Pontoizeau, C., Blaise, B. J., Bachelot, T., Elena-Herrmann, B., & Trédan, O. (2014). A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Letters, 343(1), 33–41. doi:10.1016/j.canlet.2013.09.011.
Kale, N. S., Haug, K., Conesa, P., Jayseelan, K., Moreno, P., Rocca-Serra, P., Nainala, V. C., Spicer, R. A., Williams, M., Li, X., Salek, R. M., Griffin, J. L., & Steinbeck, C. (2016). MetaboLights: An open-access database repository for metabolomics data. Current Protocols in Bioinformatics, 53, 14.13.1–14.13.18. doi:10.1002/0471250953.bi1413s53.
Kang, J., Zhu, L., Lu, J., & Zhang, X. (2015). Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. Journal of Neuroimmunology, 279, 25–32. doi:10.1016/j.jneuroim.2015.01.001.
Kordalewska, M., & Markuszewski, M. J. (2015). Metabolomics in cardiovascular diseases. Journal of Pharmaceutical and Biomedical Analysis, 113, 121–136. doi:10.1016/j.jpba.2015.04.021.
Larive, C. K., Barding, G. A., & Dinges, M. M. (2015). NMR spectroscopy for metabolomics and metabolic profiling. Analytical Chemistry, 87(1), 133–146. doi:10.1021/ac504075g.
Lenz, E. M., & Wilson, I. D. (2007). Analytical strategies in metabonomics. Journal of Proteome Research, 6(2), 443–458. doi:10.1021/pr0605217.
Li, L., Li, R., Zhou, J., Zuniga, A., Stanislaus, A. E., Wu, Y., et al. (2013). MyCompoundID: Using an evidence-based metabolome library for metabolite identification. Analytical Chemistry, 85(6), 3401–3408. doi:10.1021/ac400099b.
Lindon, J. C., & Nicholson, J. K. (2008). Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. TrAC Trends in Analytical Chemistry, 27(3), 194–204. doi:10.1016/j.trac.2007.08.009.
Mercier, P., Lewis, M. J., Chang, D., Baker, D., & Wishart, D. S. (2011). Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. Journal of biomolecular NMR, 49(3–4), 307–323. doi:10.1007/s10858-011-9480-x.
Mihaleva, V. V., Verhoeven, H. A., de Vos, R. C. H., Hall, R. D., & van Ham, R. C. H. J. (2009). Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index. Bioinformatics (Oxford, England), 25(6), 787–794. doi:10.1093/bioinformatics/btp056.
Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011). The human serum metabolome. PloS ONE, 6(2), e16957. doi:10.1371/journal.pone.0016957.
Ravanbakhsh, S., Liu, P., Bjorndahl, T. C., Bjordahl, T. C., Mandal, R., Grant, J. R., et al. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PloS ONE, 10(5), e0124219. doi:10.1371/journal.pone.0124219.
Singh, A., Sharma, R. K., Chagtoo, M., Agarwal, G., George, N., Sinha, N., & Godbole, M. M. (2017). 1H NMR metabolomics reveals association of high expression of inositol 1, 4, 5 trisphosphate receptor and metabolites in breast cancer patients. PloS ONE, 12(1), e0169330. doi:10.1371/journal.pone.0169330.
Smolinska, A., Blanchet, L., Buydens, L. M. C., & Wijmenga, S. S. (2012). NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review. Analytica Chimica Acta, 750, 82–97. doi:10.1016/j.aca.2012.05.049.
Sousa, S. A. A., Magalhães, A., & Ferreira, M. M. C. (2013). Optimized bucketing for NMR spectra: Three case studies. Chemometrics and Intelligent Laboratory Systems, 122, 93–102. doi:10.1016/j.chemolab.2013.01.006.
Tardivel, P. J. C., Canlet, C., Lefort, G., Tremblay-Franco, M., Debrauwer, L., Concordet, D., & Servien, R. (2017). ASICS: An automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics, 13(10), 109. doi:10.1007/s11306-017-1244-5.
Tulpan, D., Léger, S., Belliveau, L., Culf, A., & Cuperlović-Culf, M. (2011). MetaboHunter: An automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures. BMC Bioinformatics, 12, 400. doi:10.1186/1471-2105-12-400.
Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Research, 41(Database issue), D801-7. doi:10.1093/nar/gks1065.
Wruck, W., Kashofer, K., Rehman, S., Daskalaki, A., Berg, D., Gralka, E., et al. (2015). Multi-omic profiles of human non-alcoholic fatty liver disease tissue highlight heterogenic phenotypes. Scientific Data, 2, 150068. doi:10.1038/sdata.2015.68.
Zheng, C., Zhang, S., Ragg, S., Raftery, D., & Vitek, O. (2011). Identification and quantification of metabolites in (1)H NMR spectra by Bayesian model selection. Bioinformatics (Oxford, England), 27(12), 1637–1644. doi:10.1093/bioinformatics/btr118.
Acknowledgements
This work was funded by a State Scholarships Foundation (IKY) Fellowship of Excellence for postgraduate studies in Greece—Siemens Program. The authors confirm that the funder had no influence over the study design, content of the paper, or selection of this journal.
Author information
Authors and Affiliations
Corresponding author
Additional information
Binary file freely available for download at http://biomig.ntua.gr/downloads/software/MIDTool.zip.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Filntisi, A., Fotakis, C., Asvestas, P. et al. Automated metabolite identification from biological fluid 1H NMR spectra. Metabolomics 13, 146 (2017). https://doi.org/10.1007/s11306-017-1286-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11306-017-1286-8