Skip to main content
Log in

Quantitative metabolomic analysis of the human cornea and aqueous humor

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Cornea is the outermost part of the eye supplied mostly by aqueous humor (AH). Therefore, the comparison of the metabolomic compositions of AH and cornea may help to determine which compounds are produced inside the cornea, and which penetrate into cornea from AH for intra-corneal consumption. Keratoconus (KC) is the most common form of the cornea dystrophy, and the analysis of KC corneas can unravel the metabolomic changes occurring in AH and cornea of KC patients.

Objectives

The work is aimed at the determination of concentrations of a wide range of metabolites in the human cornea and AH, the comparison of the metabolomic profiles of cornea and AH, and the comparison of the metabolomic compositions of samples taken from KC patients and normal donors (post-mortem).

Methods

The quantitative metabolomic profiling was carried out with the use of two independent methods—high-frequency 1H NMR spectroscopy and HPLC with high-resolution ESI-MS detection.

Results

The concentrations of 71 most abundant metabolites in cornea and AH from keratoconus patients and from human cadavers have been measured. It is found that the concentrations of purines and organic acids in cornea are significantly higher than in AH. The KC corneas are characterized by the enhanced levels of acetate and citrate, and also by low values of GSH/GSSG ratios.

Conclusion

A significant difference in the metabolomic compositions of the human AH and cornea has been revealed. The concentrations of glucose and some amino acids in cornea are significantly lower than in AH, indicating their fast consumption inside the cornea. The high levels of organic acids, purines and GSH in cornea should be attributed to their production in the cornea. The enhanced levels of acetate and citrate as well as the low values of GSH/GSSG ratios in KC corneas are the indicators of the oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambekar, R., Toussaint, K. C. Jr., & Wagoner Johnson, A. (2011). The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. Journal of the Mechanical Behavior of Biomedical Materials, 4(3), 223–236.

    Article  PubMed  Google Scholar 

  • Arnal, E., Peris-Martínez, C., Menezo, J. L., Johnsen-Soriano, S., & Romero, F. J. (2011). Oxidative stress in keratoconus? Investigative Ophthalmology & Visual Science, 52(12), 8592–8597.

    Article  CAS  Google Scholar 

  • Buddi, R., Lin, B., Atilano, S. R., Zorapapel, N. C., Kenney, M. C., & Brown, D. J. (2002). Evidence of oxidative stress in human corneal diseases. The Journal of Histochemistry & Cytochemistry, 50(3), 341–351.

    Article  CAS  Google Scholar 

  • Chaerkady, R., Shao, H., Scott, S.-G., Pandey, A., Jun, A. S., & Chakravarti, S. (2013). The keratoconus corneal proteome: Loss of epithelial integrity and stromal degeneration. Journal of Proteomics, 87, 122–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotran, R. S., Kumar, V., & Robbins, S. L. (1994). Cellular injury and cellular death (5th edn.). Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Delamere, N. A. (1996). Ascorbic acid and the eye. Subcellular Biochemistry, 25, 313–329.

    Article  CAS  PubMed  Google Scholar 

  • DiMattio, J. (1989). A comparative study of ascorbic acid entry into aqueous and vitreous humors of the rat and guinea pig. Investigative Ophthalmology & Visual Science, 30(11), 2320–2331.

    CAS  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2013). Biochemistry changes that occur after death: Potential markers for determining post-mortem interval. PLoS ONE, 8(11), e82011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2014). Estimation of post-mortem interval using biochemical markers. Australian Journal of Forensic Sciences, 46(1), 8–26.

    Article  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2015). Metabolomics of post-mortem blood: Identifying potential markers of post-mortem interval. Metabolomics, 11(1), 237–245.

    Article  CAS  Google Scholar 

  • Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.

    Article  CAS  PubMed  Google Scholar 

  • Gowda, G. A. N., Gowda, Y. N., & Raftery, D. (2015). Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Analytical Chemistry, 87(1), 706–715.

    Article  CAS  PubMed  Google Scholar 

  • Gowda, G. A. N., & Raftery, D. (2014). Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Analytical Chemistry, 86(11), 5433–5440.

    Article  CAS  PubMed Central  Google Scholar 

  • Gowda, G. A. N., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., & Raftery, D. (2008). Metabolomics-based methods for early disease diagnostics. Expert Review of Molecular Diagnostics, 8(5), 617–633.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, R., Srivastava, O. P., & Pfister, R. R. (2011). Differential epithelial and stromal protein profiles in keratoconus and normal human corneas. Experimental Eye Research, 92(4), 282–298.

    Article  CAS  PubMed  Google Scholar 

  • Karamichos, D., Hutcheon, A. E., Rich, C. B., Trinkaus-Randall, V., Asara, J. M., & Zieske, J. D. (2014). In vitro model suggests oxidative stress involved in keratoconus disease. Scientific Reports, 4, 4608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karamichos, D., Zieske, J. D., Sejersen, H., Sarker-Nag, A., Asara, J. M., & Hjortdal, J. (2015). Tear metabolite changes in keratoconus. Experimental Eye Research, 132, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keleş, M. S., Keleş, S., Kulaçoğlu, D. N., Taysí, S., Baykal, O., Memíşoğullari, R., et al. (2011). Free amino acid concentration in aqueous humour of patients with nuclear or cortical cataract. Turkish Journal of Medical Sciences, 41(3), 501–505.

    Google Scholar 

  • Kryczka, T., Ehlers, N., Nielsen, K., Wylęgała, E., Dobrowolski, D., & Midelfart, A. (2013a). Metabolic profile of keratoconic cornea. Current Eye Research, 38(2), 305–309.

    Article  CAS  PubMed  Google Scholar 

  • Kryczka, T., Szaflik, J. P., Szaflik, J., & Midelfart, A. (2013b). Influence of donor age, post-mortem time and cold storage on metabolic profile of human cornea. Acta Ophthalmologica, 91(1), 83–87.

    Article  PubMed  Google Scholar 

  • Kryczka, T., Wylęgała E., Dobrowolski, D., & Midelfart, A. (2014). NMR spectroscopy of human eye tissues: A new insight into ocular biochemistry. The Scientific World Journal, 2014, 546192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishur, R. J., & Rea, S. L. (2012). Applications of mass spectrometry to metabolomics and metabonomics: Detection of biomarkers of aging and of age-related diseases. Mass Spectrometry Reviews, 31(1), 70–95.

    Article  CAS  PubMed  Google Scholar 

  • Morishige, N., Shin-gyou-uchi, R., Azumi, H., Ohta, H., Morita, Y., Yamada, N., et al. (2014). Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy. Investigative Ophthalmology & Visual Science, 55(12), 8377–8385.

    Article  Google Scholar 

  • Saijyothi, A. V., Fowjana, J., Madhumathi, S., Rajeshwari, M., Thennarasu, M., Prema, P., et al. (2012). Tear fluid small molecular antioxidants profiling shows lowered glutathione in keratoconus. Experimental Eye Research, 103, 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Shoham, A., Hadziahmetovic, M., Dunaief, J. L., Mydlarski, M. B., & Schipper, H. M. (2008). Oxidative stress in diseases of the human cornea. Free Radical Biology & Medicine, 45(8), 1047–1055.

    Article  CAS  Google Scholar 

  • Snytnikova, O. A., Khlichkina, A. A., Yanshole, L. V., Yanshole, V. V., Iskakov, I. A., Egorova, E. V.,et al (2017). Metabolomics of the human aqueous humor. Metabolomics, 13, 5.

    Article  CAS  Google Scholar 

  • Tamara, S. O., Yanshole, L. V., Yanshole, V. V., Fursova, A. Z., Stepakov, D. A., Novoselov, V. P., et al. (2016). Spatial distribution of metabolites in the human lens. Experimental Eye Research, 143, 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Tan, S. Z., Begley, P., Mullard, G., Hollywood, K. A., & Bishop, P. N. (2016). Introduction to metabolomics and its applications in ophthalmology. Eye (London, England), 30(6), 773–783.

    Article  CAS  Google Scholar 

  • Truscott, R. J. (2005). Age-related nuclear cataract-oxidation is the key. Experimental Eye Research, 80(5), 709–725.

    Article  CAS  PubMed  Google Scholar 

  • Tsentalovich, Y. P., Verkhovod, T. D., Yanshole, V. V., Kiryutin, A. S., Yanshole, L. V., Fursova, A. Z., et al. (2015). Metabolomic composition of normal aged and cataractous human lenses. Experimental Eye Research, 134, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Wojcik, K. A., Blasiak, J., Szaflik, J., & Szaflik, J. P. (2014). Role of biochemical factors in the pathogenesis of keratoconus. Acta Biochimica Polonica, 61(1), 55–62.

    PubMed  Google Scholar 

  • Wojcik, K. A., Kaminska, A., Blasiak, J., Szaflik, J., & Szaflik, J. P. (2013). Oxidative stress in the pathogenesis of keratoconus and Fuchs endothelial corneal dystrophy. International Journal of Molecular Sciences, 14(9), 19294–19308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanshole, V. V., Snytnikova, O. A., Kiryutin, A. S., Yanshole, L. V., Sagdeev, R. Z., & Tsentalovich, Y. P. (2014). Metabolomics of the rat lens: A combined LC-MS and NMR study. Experimental Eye Research, 125, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Zelentsova, E. A., Yanshole, L. V., Snytnikova, O. A., Yanshole, V. V., Tsentalovich, Y. P., & Sagdeev, R. Z. (2016). Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors. Metabolomics, 12(11), 172.

    Article  CAS  Google Scholar 

  • Zhang, A., Sun, H., Yan, G., Wang, P., & Wang, X. (2016). Mass spectrometry-based metabolomics: Applications to biomarker and metabolic pathway research. Biomedical Chromatography, 30(1), 7–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the SB RAS (Program “Integration and development” II.2П/V.44-18, project 0333-2016-0004) in NMR measurements, by RFBR (projects 17-03-00656) in LC-MS measurements, and by FASO Russia (project 0333-2016-0001) in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri P. Tsentalovich.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Informed consent

All participants signed an informed consent form.

Research involving human participants and/or animals

The study was conducted in accordance with the Declaration of Helsinki (2013) of the World Medical Association, and with the ethical approval from International Tomography Center.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snytnikova, O.A., Yanshole, L.V., Iskakov, I.A. et al. Quantitative metabolomic analysis of the human cornea and aqueous humor. Metabolomics 13, 152 (2017). https://doi.org/10.1007/s11306-017-1281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1281-0

Keywords

Navigation