, 13:133 | Cite as

Iridoid and phenylethanoid/phenylpropanoid metabolite profiles of Scrophularia and Verbascum species used medicinally in North America

  • Korey J. Brownstein
  • Mahmoud Gargouri
  • William R. FolkEmail author
  • David R. GangEmail author
Original Article



Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.


We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.


Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.


Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.


Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.


Harpagoside Iridoid Phenylethanoid/phenylpropanoid Scrophularia Verbascoside Verbascum 



We acknowledge support from the National Science Foundation Graduate Research Fellowship Program (NSF GRFP) and Achievement Rewards for College Scientists (ARCS) Foundation, Seattle ARCS Chapter to Korey Brownstein, and NIH/NCCIH grant 1R21AT009086 (W. Folk). We would also like to thank Michael and Deborah Brownstein for editorial assistance, Todd Coffey for statistical assistance, Jeong-Jin Park for Synapt G2-S assistance, George Rottinghaus for assistance with liquid chromatography, and Susan Vogtman for growth chamber assistance. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the sponsors.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human participants and animals

These statements are not applicable because this article does not contain any studies with human participants or animals.

Supplementary material

11306_2017_1272_MOESM1_ESM.jpg (258 kb)
Fig. S1 The species, a S. marilandica (Sm) and b V. thapsus (Vt), are shown to represent the genera a Scrophularia and b Verbascum. The orange and red arrows indicate the young and old leaves, respectively (JPG 257 KB)
11306_2017_1272_MOESM2_ESM.docx (33 kb)
Supplementary material 2 (DOCX 32 KB)


  1. Abdelouahab, N., & Heard, C. (2008). Effect of the major glycosides of Harpagophytum procumbens (devil’s claw) on epidermal cyclooxygenase-2 (COX-2) in vitro. Journal of Natural Products, 71, 746–749.CrossRefPubMedGoogle Scholar
  2. Alipieva, K. I., Korkina, L., Orhan, I. E., & Georgiev, M. I. (2014a). Verbascoside: A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnology Advances, 32, 1065–1076.CrossRefPubMedGoogle Scholar
  3. Alipieva, K. I., Orhan, I. E., Cankaya, I. I. T., Kostadinova, E. P., & Georgiev, M. I. (2014b). Treasure from garden: Chemical profiling, pharmacology and biotechnology of mulleins. Phytochemistry Reviews, 13, 417–444.CrossRefGoogle Scholar
  4. Anauate, M. C., Torres, L. M., & de Mello, S. B. V. (2010). Effect of isolated fractions of Harpagophytum procumbens DC (devil’s claw) on COX-1, COX-2 activity and nitric oxide production on whole-blood assay. Phytotherapy Research, 24, 1365–1369.CrossRefPubMedGoogle Scholar
  5. Baghdikian, B., Lanhers, M. C., Fleurentin, J., Ollivier, E., Maillard, C., Balansard, G., & Mortier, F. (1997). Analytical study, anti-inflammatory and analgesic effects of Harpagophytum procumbens and Harpagophytum zeyheri. Planta Medica, 63, 171–176.CrossRefPubMedGoogle Scholar
  6. Bairu, M. W., Amoo, S. O., & van Staden, J. (2011). Comparative phytochemical analysis of wild and in vitro-derived greenhouse-grown tubers, in vitro shoots and callus-like basal tissues of Harpagophytum procumbens. South African Journal of Botany, 77, 479–484.CrossRefGoogle Scholar
  7. Brownstein, K. J., Thomas, A. L., Rottinghaus, G. E., Lynch, B. A., Gang, D. R., & Folk, W. R. (2016). Harpagide and related iridoid glycosides in vegetative tissues of cultivated Scrophularia lanceolata and Scrophularia marilandica. Acta Horticulturae, 1125, 83–90.CrossRefGoogle Scholar
  8. Dembitsky, V. M. (2006). Astonishing diversity of natural surfactants: 7. Biologically active hemi- and monoterpenoid glycosides. Lipids, 41, 1–27.CrossRefPubMedGoogle Scholar
  9. Diaz, A., Fernandez, L., Ollivier, E., Martin, T., Villaescusa, L., & Balansard, G. (1998). Reverse-phase high pressure liquid chromatography analysis of harpagoside, scorodioside and verbascoside from Scrophularia scorodonia: quantitative determination of harpagoside. Planta Medica, 64, 94–95.CrossRefPubMedGoogle Scholar
  10. Galindez, J. de S., Lanza, A. M. D., & Fernandez, L. M. (2002). Biologically active substances from the genus Scrophularia. Pharmaceutical Biology, 40, 45–59.CrossRefGoogle Scholar
  11. Garcia, D., Fernandez, A., Saenz, T., & Ahumada, C. (1996). Anti-inflammatory effects of different extracts and harpagoside isolated from Scrophularia frutescens L. Farmaco, 51, 443–446.PubMedGoogle Scholar
  12. Georgiev, M. I., Ali, K., Alipieva, K., Verpoorte, R., & Choi, Y. H. (2011). Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics. Phytochemistry, 72, 2045–2051.CrossRefPubMedGoogle Scholar
  13. Georgiev, M. I., Ivanovska, N., Alipieva, K., Dimitrova, P., & Verpoorte, R. (2013). Harpagoside: From Kalahari desert to pharmacy shelf. Phytochemistry, 92, 8–15.CrossRefPubMedGoogle Scholar
  14. Grabias, B., & Swiatek, L. (1987). Iridoid glucosides in Verbascum genus. Herba Polonica, 33, 225–232.Google Scholar
  15. Gyurkovska, V., Alipieva, K., Maciuk, A., Dimitrova, P., Ivanovska, N., Haas, C., Bley, T., & Georgiev, M. (2011). Anti-inflammatory activity of devil’s claw in vitro systems and their active constituents. Food Chemistry, 125, 171–178.CrossRefGoogle Scholar
  16. Herrick, J. W. (1977) Iroquois Medical Botany. PhD Thesis. State University of New York, Albany, NY.Google Scholar
  17. Hough, F. B. (1849). The medicinal qualities of Scrophularia marilandica. New England Journal of Medicine, 40, 462.CrossRefGoogle Scholar
  18. Kindscher, K., & Hurlburt, D. P. (1998). Huron Smith’s ethnobotany of the Hocak (Winnebago). Economic Botany, 52, 352–372.CrossRefGoogle Scholar
  19. Mncwangi, N., Chen, W., Vermaak, I., Viljoen, A. M., & Gericke, N. (2012). Devil’s claw: A review of the ethnobotany, phytochemistry and biological activity of Harpagophytum procumbens. Journal of Ethnopharmacology, 143, 755–771.CrossRefPubMedGoogle Scholar
  20. Mncwangi, N. P., Viljoen, A. M., Zhao, J., Vermaak, I., Chen, W., & Khan, I. (2014). What the devil is in your phytomedicine? Exploring species substitution in Harpagophytum through chemometric modeling of 1 H-NMR and UHPLC-MS datasets. Phytochemistry, 106, 104–115.CrossRefPubMedGoogle Scholar
  21. Moerman, D. (2003) Native American Ethnobotany. Accessed February, 2017, from
  22. Ngo, L. T., Okogun, J. I., & Folk, W. R. (2013). 21st century natural product research and drug development and traditional medicines. Natural Product Reports, 30, 584–592.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Oliveros, J. C. (2015) Venny. An interactive tool for comparing lists with Venn’s diagrams. Accessed February, 2017, from
  24. Saslis-Lagoudakis, C. H., Savolainen, V., Williamson, E. M., Forest, F., Wagstaff, S. J., Baral, S. R., Watson, M. F., Pendry, C., & Hawkins, J. A. (2012). Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proceedings of the National Academy of Sciences, 109, 15835–15840.Google Scholar
  25. Scheunert, A., & Heubl, G. (2011). Phylogenetic relationships among New World Scrophularia L. (Scrophulariaceae): New insights inferred from DNA sequence data. Plant Systematics and Evolution, 291, 69–89.CrossRefGoogle Scholar
  26. Sesterhenn, K., Distl, M., & Wink, M. (2007). Occurrence of iridoid glycosides in in vitro cultures and intact plants of Scrophularia nodosa L. Plant Cell Reports, 26, 365–371.CrossRefPubMedGoogle Scholar
  27. Stevens, P. F. (2001) Angiosperm Phylogeny Website. Version 12, July 2012. Accessed February, 2017, from
  28. Stewart, K. M., & Cole, D. (2005). The commercial harvest of devil’s claw (Harpagophytum procumbens) in southern Africa: The devil’s in the details. Journal of Ethnopharmacology, 100, 225–236.CrossRefPubMedGoogle Scholar
  29. Tundis, R., Loizzo, M. R., Menichini, F., Statti, G. A., & Menichini, F. (2008). Biological and pharmacological activities of iridoids: Recent developments. Mini Reviews in Medicinal Chemistry, 8, 399–420.CrossRefPubMedGoogle Scholar
  30. Tunman, P., & Lux, R. (1962). Zur kenntniss der inhaltsstoffe aus der wurzel von H.p. Deutsche Apotheker Zeitung, 102, 1274–1275.Google Scholar
  31. United States Department of Agriculture, Agricultural Research Service (USDA ARS). (1992). Dr. Duke’s Phytochemical and Ethnobotanical Databases. Accessed February, 2017, from
  32. Viljoen, A., Mncwangi, N., & Vermaak, I. (2012). Anti-inflammatory iridoids of botanical origin. Current Medicinal Chemistry, 19, 2104–2127.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wilhelm, G. Jr. (1974). The mullein: Plant piscicide of the mountain folk culture. Geographical Review, 64, 235–252.CrossRefGoogle Scholar
  34. Xia, J., Sinelnikov, I., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0: Making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of Biological ChemistryWashington State UniversityPullmanUSA
  2. 2.Department of BiochemistryUniversity of MissouriColumbiaUSA
  3. 3.Laboratory of Plant Molecular PhysiologyCenter of Biotechnology of Borj CedriaHammam-LifTunisia

Personalised recommendations