Skip to main content

Urinary metabolite markers characterizing tuberculosis treatment failure

Abstract

Background

Considering that approximately 15% of the nine million new tuberculosis (TB) cases reported per annum are not treated successfully, new, distinctive and specific biomarkers are needed to better characterize the biological basis of a poor treatment outcome.

Methods

Urine samples from 41 active pulmonary TB patients were collected at baseline (time of diagnosis), during treatment (weeks 1, 2 and 4) and 2 weeks after treatment completion (week 26). These samples were divided into successful (cured) and unsuccessful (failed) treatment outcome groups and analyzed using a GCxGC-TOFMS metabolomics research approach.

Results

The metabolite data collected showed clear differentiation of the cured and failed treatment outcome groups using the samples collected at the time of diagnosis, i.e. before any treatment was administered.

Conclusions

The treatment failure group was characterized by an imbalanced gut microbiome, in addition to elevated levels of metabolites associated with abnormalities in the long-chain fatty acid β-oxidation pathway, accompanied by reduced l-carnitine and short-chain fatty acids, indicative of a mitochondrial trifunctional protein defect in particular. Furthermore, an altered amino acid metabolism was also observed in these patients, which confirms previous findings and associations to increased interferon gamma due to the host’s immune response to M. tuberculosis and a compromised insulin secretion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Antoine, D., French, C. E., Jones, J., & Watson, J. M. (2007). Tuberculosis treatment outcome monitoring in England, Wales and Northern Ireland for cases reported in 2001. Journal of Epidemiology and Community Health, 61(4), 302–307.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clemente, J. C., Ursell, L. K., Parfrey, L. W., & Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell, 148(6), 1258–1270.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. De Villiers, L., & Loots, D. T. (2013). Using metabolomics for elucidating the mechanisms related to tuberculosis treatment failure. Current Metabolomics, 1(4), 306–317.

    Article  Google Scholar 

  4. Du Preez, I., & Loots, D. T. (2013). New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis, 93(3), 330–337.

    CAS  Article  PubMed  Google Scholar 

  5. Dye, C., Watt, C. J., Bleed, D. M., Hosseini, S. M., & Raviglione, M. C. (2005). Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA, 293(22), 2767–2775.

    CAS  Article  PubMed  Google Scholar 

  6. Eisenhofer, G., Kopin, I. J., & Goldstein, D. S. (2004). Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacological Reviews, 56(3), 331–349.

    CAS  Article  PubMed  Google Scholar 

  7. Flanagan, J. L., Simmons, P. A., Vehige, J., Willcox, M. D., & Garrett, Q. (2010). Role of carnitine in disease. Nutrition & Metabolism, 7(1), 1.

    Article  Google Scholar 

  8. Garg, U., & Dasouki, M. (2006). Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: Clinical and laboratory aspects. Clinical Biochemistry, 39(4), 315–332.

    CAS  Article  PubMed  Google Scholar 

  9. Gonthier, M.-P., Cheynier, V., Donovan, J. L., Manach, C., Morand, C., Mila, I., et al. (2003). Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. The Journal of Nutrition, 133(2), 461–467.

    CAS  PubMed  Google Scholar 

  10. Gonzalez, A., Stombaugh, J., Lozupone, C., Turnbaugh, P. J., Gordon, J. I., & Knight, R. (2011). The mind-body-microbial continuum. Dialogues in Clinical Neuroscience, 13(1), 55.

    PubMed  PubMed Central  Google Scholar 

  11. Hasanally, D., Chaudhary, R., & Ravandi, A. (2014). Role of phospholipases and oxidized phospholipids in inflammation. Phospholipases in health and disease. (pp. 55–72) Berlin: Springer.

    Chapter  Google Scholar 

  12. Hatamkhani, S., Khalili, H., Karimzadeh, I., Dashti-Khavidaki, S., Abdollahi, A., & Jafari, S. (2014). Carnitine for prevention of antituberculosis drug-induced hepatotoxicity: A randomized, clinical trial. Journal of Gastroenterology and Hepatology, 29(5), 997–1004.

    CAS  Article  PubMed  Google Scholar 

  13. Hesseling, A., Walzl, G., Enarson, D., Carroll, N., Duncan, K., Lukey, P., et al. (2010). Baseline sputum time to detection predicts month two culture conversion and relapse in non-HIV-infected patients. The International Journal of Tuberculosis and Lung Disease, 14(5), 560–570.

    CAS  PubMed  Google Scholar 

  14. Heyes, M. P., Saito, K., & Markey, S. P. (1992). Human macrophages convert l-tryptophan into the neurotoxin quinolinic acid. Biochemical Journal, 283, 633–635.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Hong, Y. S. (2011). NMR-based metabolomics in wine science. Magnetic Resonance in Chemistry, 49(S1), S13–S21.

    CAS  Article  PubMed  Google Scholar 

  16. Horne, D. J., Royce, S. E., Gooze, L., Narita, M., Hopewell, P. C., Nahid, P., et al. (2010). Sputum monitoring during tuberculosis treatment for predicting outcome: Systematic review and meta-analysis. The Lancet Infectious Diseases, 10(6), 387–394.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jellum, E., Børresen, H. C., & Eldjarn, L. (1973). The presence of furan derivatives in patients receiving fructose-containing solutions intravenously. Clinica Chimica Acta, 47(2), 191–201.

    CAS  Article  Google Scholar 

  18. Jirillo, E., Altamura, M., Marcuccio, C., Tortorella, C., De Simone, C., & Antonaci, S. (1993). Immunological responses in patients with tuberculosis and in vivo effects of acetyl-l-carnitine oral administration. Mediators of Inflammation, 2(7), S17-S20.

    Article  PubMed Central  Google Scholar 

  19. Jirillo, E., Altamura, M., Munno, I., Pellegrino, N., Sabato, R., Di Fabio, S., et al. (1991). Effects of acetyl-l-carnitine oral administration on lymphocyte antibacterial activity and TNF-α levels in patients with active pulmonary tuberculosis. A randomized double blind versus placebo study. Immunopharmacology and Immunotoxicology, 13(1–2), 135–146.

    CAS  Article  PubMed  Google Scholar 

  20. Kaushal, D. (2012). Eicosanoids, prostaglandins, and the progression of tuberculosis. Journal of Infectious Diseases, 206, 1803.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kronick, J., Mamer, O., Montgomery, J., & Scriver, C. (1983). Apparent gastrointestinal origin of cis-4-hydroxycyclohexanecarboxylic acid. Clinica Chimica Acta, 132(2), 205–208.

    CAS  Article  Google Scholar 

  22. Lai, J. C., Liang, B. B., Zhai, S., Jarvi, E. J., & Lu, D. R. (1994). Brain mitochondrial citrate synthase and glutamate dehydrogenase: differential inhibition by fatty acyl coenzyme A derivatives. Metabolic Brain Disease, 9(2), 143–152.

    CAS  Article  PubMed  Google Scholar 

  23. Li, G., Zhang, H., Sader, F., Vadhavkar, N., & Njus, D. (2007). Oxidation of 4-methylcatechol: Implications for the oxidation of catecholamines. Biochemistry, 46(23), 6978–6983.

    CAS  Article  PubMed  Google Scholar 

  24. Lu, J., Xie, G., Jia, W., & Jia, W. (2013). Insulin resistance and the metabolism of branched-chain amino acids. Frontiers of Medicine, 7(1), 53–59.

    Article  PubMed  Google Scholar 

  25. Luies, L., & Loots, D. (2016). Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive. Metabolomics, 12(3), 1–9.

    Article  Google Scholar 

  26. Mahapatra, S., Hess, A. M., Johnson, J. L., Eisenach, K. D., DeGroote, M. A., Gitta, P., et al. (2014). A metabolic biosignature of early response to anti-tuberculosis treatment. BMC Infectious Diseases, 14(1), 53.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marklund, N., Östman, B., Nalmo, L., Persson, L., & Hillered, L. (2000). Hypoxanthine, uric acid and allantoin as indicators of in vivo free radical reactions. Description of a HPLC method and human brain microdialysis data. Acta neurochirurgica, 142(10), 1135–1142.

    CAS  Article  PubMed  Google Scholar 

  28. Mily, A., Rekha, R. S., Kamal, S. M., Arifuzzaman, A. S. M., Rahim, Z., Khan, L., et al. (2015). Significant effects of oral phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: A randomized controlled trial. PloS One, 10(9), e0138340.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Newsholme, P., Brennan, L., & Bender, K. (2006). Amino acid metabolism, β-cell function, and diabetes. Diabetes, 55(Supplement 2), S39–S47.

    CAS  Article  Google Scholar 

  30. Pallant, J. (2001). Manual SPSS survival: A step by step guide to data analysis using SPSS (p. 302). Philadelphia: Open University Press, McGraw-Hill Education.

    Google Scholar 

  31. Pettersen, J. E., & Jellum, E. (1972). The identification and metabolic origin of 2-furoylglycine and 2, 5-furandicarboxylic acid in human urine. Clinica Chimica Acta, 41, 199–207.

    CAS  Article  Google Scholar 

  32. Puri, D. (2006). Textbook of Medical Biochemistry: Clinical cases, Chap. 13.2. In: Textbook of medical biochemistry (Vol (2nd edn., p. 376). New Delhi: Elsevier.

    Google Scholar 

  33. Royce, L. A., Liu, P., Stebbins, M. J., Hanson, B. C., & Jarboe, L. R. (2013). The damaging effects of short chain fatty acids on Escherichia coli membranes. Applied Microbiology and Biotechnology, 97(18), 8317–8327.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Russell, W. R., Hoyles, L., Flint, H. J., & Dumas, M.-E. (2013). Colonic bacterial metabolites and human health. Current Opinion in Microbiology, 16(3), 246–254.

    CAS  Article  PubMed  Google Scholar 

  35. Ryan, D., Robards, K., Prenzler, P. D., & Kendall, M. (2011). Recent and potential developments in the analysis of urine: A review. Analytica Chimica Acta, 684(1), 17–29.

    CAS  Article  Google Scholar 

  36. Schoeman, J. C., Preez, Du, I., & Loots, D. T. (2012). A comparison of four sputum pre-extraction preparation methods for identifying and characterising M. tuberculosis using GCxGC-TOFMS metabolomics. Journal of Microbiological Methods, 91, 301–311.

    CAS  Article  PubMed  Google Scholar 

  37. Shaw, W. (2013). Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutritional Neuroscience, 13, 135–143

    Article  Google Scholar 

  38. Shinka, T., Inoue, Y., Ohse, M., Ito, A., Ohfu, M., Hirose, S., et al. (2002). Rapid and sensitive detection of urinary 4-hydroxybutyric acid and its related compounds by gas chromatography–mass spectrometry in a patient with succinic semialdehyde dehydrogenase deficiency. Journal of Chromatography B, 776(1), 57–63.

    CAS  Article  Google Scholar 

  39. Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sim, K. G., Hammond, J., & Wilcken, B. (2002). Strategies for the diagnosis of mitochondrial fatty acid β-oxidation disorders. Clinica Chimica Acta, 323(1), 37–58.

    CAS  Article  Google Scholar 

  41. Smuts, I., Van Der Westhuizen, F. H., Louw, R., Mienie, L. J., Engelke, U. F. H., Wevers, R. A., et al. (2013). Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach. Metabolomics, 9(2), 379–391.

    CAS  Article  Google Scholar 

  42. Taniguchi, K., & Armstrong, M. D. (1963). The enzymatic formation of o-hydroxyphenylacetic acid. The Journal of Biological Chemistry, 238, 4091–4097.

    CAS  PubMed  Google Scholar 

  43. Tomás-Barberán, F. A., & Clifford, M. N. (2000). Dietary hydroxybenzoic acid derivatives–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1024–1032.

    Article  Google Scholar 

  44. Van Aardt, W. J., le Roux, J. M., Lindeque, J. Z., Mason, S., & Louw, R. (2016). The effect of temperature on the respiration and metabolism of the African burrowing scorpion (Opistophthalmus latimanus). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 20, 50–56.

    Google Scholar 

  45. Van Veldhoven, P. P. (2010). Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. Journal of Lipid Research, 51(10), 2863–2895.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Venter, L., Lindeque, Z., Van Rensburg, P. J., Van Der Westhuizen, F., Smuts, I., & Louw, R. (2015). Untargeted urine metabolomics reveals a biosignature for muscle respiratory chain deficiencies. Metabolomics, 11(1), 111–121.

    CAS  Article  Google Scholar 

  47. Walzl, G., Ronacher, K., Siawaya, J. F. D., & Dockrell, H. M. (2008). Biomarkers for TB treatment response: Challenges and future strategies. Journal of Infection, 57(2), 103–109.

    Article  PubMed  Google Scholar 

  48. Wang, S. Y., Kuo, C. H., & Tseng, Y. J. (2012). Batch normalizer: A fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration methods. Analytical Chemistry, 85(2), 1037–1046.

    Article  PubMed  Google Scholar 

  49. Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., van Velzen, E. J. J., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81–89.

    CAS  Article  Google Scholar 

  50. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1), 37–52.

    CAS  Article  Google Scholar 

  51. World Health Organization (2014). Definitions and reporting framework for tuberculosis—2014 revision. (p. 47). Geneva: WHO Press.

    Google Scholar 

  52. World Health Organization (2016). Global tuberculosis report 2016. (p. 214). Geneva: World Health Organization.

    Google Scholar 

  53. Zhou, C., & Greenberg, M. M. (2012). Histone-catalyzed cleavage of nucleosomal DNA containing 2-deoxyribonolactone. Journal of the American Chemical Society, 134(19), 8090–8093.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

DTL conceptualized the study design; KR and GW provided all urine samples. LL performed the GC data acquisition/analysis and CM the UPLC data acquisition/analysis. LL, JM and DTL interpreted the data and drafted the article. All authors approved the final version to be submitted.

Corresponding authors

Correspondence to Laneke Luies or Du Toit Loots.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest, and that this manuscript, and the work described therein, is unpublished and has not been submitted for publication elsewhere.

Ethical approval

Ethical approval for this investigation, conducted according to the Declaration of Helsinki and International Conference on Harmonization Guidelines, was obtained from the Ethics Committee of the North-West University, South Africa (reference number NWU-00127-11-A1), as well as from Stellenbosch University Health Research Ethics Committee (reference number 99/039) and Cape Town City Health. All participants gave written informed consent for study participation and HIV testing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2017_1261_MOESM1_ESM.jpg

Supplementary Figure: Principal components analysis (PCA) scores plots of principal component 1 versus principal component 2 of the successful and unsuccessful treatment outcome groups, at (a) time of diagnosis, (b) week 1, (c) week 2, (d) week 4 of treatment and (e) two weeks after treatment completion (week 26), subsequent to an organic acid extraction and GCxGC-TOFMS analyses. The explained variances are indicated in parenthesis. (JPG 1267 KB)

Supplementary material 2 (CSV 118 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luies, L., Mienie, J., Motshwane, C. et al. Urinary metabolite markers characterizing tuberculosis treatment failure. Metabolomics 13, 124 (2017). https://doi.org/10.1007/s11306-017-1261-4

Download citation

Keywords

  • Biomarkers
  • M. tuberculosis
  • Metabolomics
  • Treatment failure
  • Tuberculosis
  • Urine