Skip to main content

Advertisement

Log in

Investigation of urinary volatomic alterations in head and neck cancer: a non-invasive approach towards diagnosis and prognosis

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Head and neck cancer (HNC), like many other forms of cancer, is usually detected in advanced stages, causing poor survival outcomes. Lack of specific and sensitive screening markers for early detection of HNC has worsened the scenario for the patients as well as the clinicians. Therefore, identification of efficient, noninvasive and affordable screening marker/methodology with high specificity and sensitivity is imminent need of situation.

Objectives

This study aims to identify and characterize urinary volatomic alterations specific to HNC.

Methods

Volatomic analysis of urine samples collected from HNC patients (n = 29) and healthy controls (n = 31) was performed using headspace solid phase microextraction coupled to gas chromatography mass spectrometry (GC–MS). Both univariate and multivariate statistical approaches were used to investigate HNC specific volatomic alterations.

Results

Statistical analysis revealed a total of 28 metabolites with highest contribution towards discrimination of HNC patients from healthy controls (VIP >1, p < 0.05, Log2 FC ≥0.58/≤−0.57). The discrimination efficiency and accuracy of urinary VOCs was ascertained by ROC curve analysis that allowed the identification of four metabolites viz. 2,6-dimethyl-7-octen-2-ol, 1-butanol, p-xylene and 4-methyl-2-heptanone with highest sensitivity and specificity to discriminate HNC patients from healthy controls. Further, the metabolic pathway analysis identified several dysregulated pathways in HNC patients and their detailed investigations could unravel novel mechanistic insights into the disease pathophysiology.

Conclusion

Overall, this study provides valuable fingerprint of the volatile profile of HNC patients, which in turn, might help in improving the current understanding of this form of cancer and lead to the development of non-invasive approaches for HNC diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amann, A., Costello, B. D. L., Miekisch, W., Schubert, J., Buszewski, B., Pleil, J., et al. (2014). The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. Journal of Breath Research, 8(3), 34001.

    Article  Google Scholar 

  • Arasaradnam, R. P., McFarlane, M. J., Ryan-Fisher, C., Westenbrink, E., Hodges, P., Thomas, M. G., et al. (2014). Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis. PloS ONE, 9(9), e108750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncology, 2012(137289), 21.

    Google Scholar 

  • Boccard, J., & Rudaz, S. (2013). Mass Spectrometry Metabolomic Data Handling for Biomarker Discovery. In H. J. Issaq & T. D. Veenstra (Eds.), Proteomic and metabolomic approaches to biomarker discovery (pp. 425–445). Boston: Academic Press.

    Chapter  Google Scholar 

  • Brand, A., Leibfritz, D., Hamprecht, B., & Dringen, R. (1998). Metabolism of cysteine in astroglial cells: Synthesis of hypotaurine and taurine. Journal of Neurochemistry, 71(2), 827–832.

    Article  CAS  PubMed  Google Scholar 

  • Broadhurst, D. I., & &Kell, D. B. (2006).Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2(4), 171–196.

    Article  CAS  Google Scholar 

  • Burke, D. G., Halpern, B., Malegan, D., McCairns, E., Danks, D., Schlesinger, P., & Wilken, B. (1983). Profiles of urinary volatiles from metabolic disorders characterized by unusual odors. Clinical Chemistry, 29(10), 1834–1838.

    CAS  PubMed  Google Scholar 

  • Chen, J. L., Tang, H. Q., Hu, J. D., Fan, J., Hong, J., & Gu, J. Z. (2010). Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry. World Journal of Gastroenterology: WJG, 16(46), 5874–5880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings, J. H. (1981). Short chain fatty acids in the human colon. Gut, 22(9), 763–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downes, M. R., Byrne, J. C., Pennington, S. R., Dunn, M. J., Fitzpatrick, J. M., & Watson, R. W. G. (2007). Urinary markers for prostate cancer. BJU International, 99(2), 263–268.

    Article  CAS  PubMed  Google Scholar 

  • Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al. (2014). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386

    Article  PubMed  Google Scholar 

  • Fiehn, O., Robertson, D., Griffin, J. L., Van der Werf, M., Nikolau, B., Morrison, N., et al. (2007). The metabolomics standard initiative (MSI). Metabolomics, 3(3), 175–178.

    Article  CAS  Google Scholar 

  • Frank Kneepkens, C. M., Lepage, G., & Roy, C. C. (1994). The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radical Biology and Medicine, 17(2), 127–160.

    Article  Google Scholar 

  • Gossai, D., & Lau-Cam, C. A. (2009). The effects of taurine, hypotaurine, and taurine homologs on erythrocyte morphology, membrane fluidity and cytoskeletal spectrin alterations due to diabetes, alcoholism and diabetes-alcoholism in the rat. Advances in Experimental Medicine and Biology, 643, 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, J. L., Nicholls, A. W., Daykin, C. A., Heald, S., Keun, H. C., Schuppe-Koistinen, I., et al. (2007). Standard reporting requirements for biological samples in metabolomics experiments: Mammalian/in vivo experiments. Metabolomics, 3(3), 179–188.

    Article  CAS  Google Scholar 

  • Guengerich, F. P., Kim, D. H., & Iwasaki, M. (1991). Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chemical Research in Toxicology, 4(2), 168–179.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Wang, C., Chi, C., Wang, X., Liu, S., Zhao, W., et al. (2015). Exhaled breath volatile biomarker analysis for thyroid cancer. Translational Research, 166(2), 188–195.

    Article  CAS  PubMed  Google Scholar 

  • Haick, H., Broza, Y. Y., Mochalski, P., Ruzsanyi, V., & Amann, A. (2014). Assessment, origin, and implementation of breath volatile cancer markers. Chemical Society Reviews, 43(5), 1423–1449.

    Article  CAS  PubMed  Google Scholar 

  • Hakim, M., Broza, Y. Y., Barash, O., Peled, N., Phillips, M., Amann, A., & Haick, H. (2012). Volatile organic compounds of lung cancer and possible biochemical pathways. Chemical Reviews, 112(11), 5949–5966.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., Gutteridge, J. M., & Cross, C. E. (1992). Free radicals, antioxidants, and human disease: Where are we now? The Journal of Laboratory and Clinical Medicine, 119(6), 598–620.

    CAS  PubMed  Google Scholar 

  • Huang, S., Chong, N., Lewis, N. E., Jia, W., Xie, G., & Garmire, L. X. (2016). Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Medicine, 8(1), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Inal, E., Lacin, M., Asal, K., Ceylan, A., Koybasioglu, A., Ileri, F., & Uslu, S. S. (2004). The significance of ferritin, lipid-associated sialic acid, CEA, squamous cell carcinoma (SCC) antigen, and CYFRA 21 – 1 levels in SCC of the head and neck. Kulak Burun Bogaz Ihtis Derg, 12(1–2), 23–30.

    PubMed  Google Scholar 

  • Liu, H., Wang, H., Li, C., Wang, L., Pan, Z., & Wang, L. (2013). Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 945–946, 53–59.

    PubMed  Google Scholar 

  • Lunt, S. Y., & Vander Heiden, M. G. (2011). Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 27, 441–464.

    Article  CAS  PubMed  Google Scholar 

  • Mallath, M. K., Taylor, D. G., Badwe, R. A., Rath, G. K., Shanta, V., Pramesh, C. S., et al. (2014). The growing burden of cancer in India: Epidemiology and social context. The Lancet Oncology, 15(6), e205–e212.

    Article  PubMed  Google Scholar 

  • Martinez-Outschoorn, U. E., Lin, Z., Whitaker-Menezes, D., Howell, A., Lisanti, M. P., & Sotgia, F. (2012). Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle, 11(21), 3956–3963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, A., & Meherotra, R. (2014). Head and neck cancer: Global burden and regional trends in India. Asian Pacific Journal of Cancer Prevention, 15(2), 537–550.

    Article  PubMed  Google Scholar 

  • Obuchowski, N. A., Blackmore, C. C., Karlik, S., & Reinhold, C. (2005). Fundamentals of clinical research for radiologists. American Journal of Roentgenology, 184(2), 364–372.

    Article  PubMed  Google Scholar 

  • Panieri, E., & Santoro, M. (2016). ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death and Disease, 7(6), e2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, M., Gleeson, K., Hughes, J. M. B., Greenberg, J., Cataneo, R. N., Baker, L., & McVay, W. P. (1999). Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet, 353(9168), 1930–1933.

    Article  CAS  PubMed  Google Scholar 

  • Potter, M., Newport, E., & Morten, K. J. (2016). The Warburg effect: 80 years on. Biochemical Society Transactions, 44(5), 1499–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan, M. P., Desai, A., & Palakal, M. J. (2013).Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma. BMC Systems Biology, 7, 141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezende, T. M. B., Freire, M. d. S., & Franco, O. L. (2010). Head and neck cancer. Cancer, 116(21), 4914–4925.

    Article  PubMed  Google Scholar 

  • Roberts, M. J., Schirra, H. J., Lavin, M. F., & Gardiner, R. A. (2011). Metabolomics: A novel approach to early and noninvasive prostate cancer detection. Korean Journal of Urology, 52(2), 79–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy, D., Mondal, S., Wang, C., He, X., Khurana, A., Giri, S., et al. (2014). Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer. Cancer & Metabolism, 2, 13.

    Article  Google Scholar 

  • Schug, Z. T., Voorde, J., Vande, & Gottlieb, E. (2016). The metabolic fate of acetate in cancer. Nature Reviews Cancer, 16(11), 708–717.

    Article  CAS  PubMed  Google Scholar 

  • Shen, C., Sun, Z., Chen, D., Su, X., Jiang, J., Li, G., et al. (2015). Developing urinary metabolomic signatures as early bladder cancer diagnostic markers. Omics: A Journal of Integrative Biology, 19(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Silva, C. L., Passos, M., & &Câmara, J. S. (2011). Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. British Journal of Cancer, 105(12), 1894–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, C. L., Passos, M., & &Câmara, J. S. (2012). Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers - A powerful strategy for breast cancer diagnosis. Talanta, 89, 360–368.

    Article  CAS  PubMed  Google Scholar 

  • Sponring, A., Filipiak, W., Mikoviny, T., Ager, C., Schubert, J., Miekisch, W., et al. (2009). Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Research, 29(1), 419–426.

    CAS  PubMed  Google Scholar 

  • Stewart, B. W., & Wild, C. P. (2014). World Cancer Report 2014. Geneva: World Health Organization.

  • Tamás, L., Szentkúti, G., Eros, M., Dános, K., Brauswetter, D., Szende, B., et al. (2011). Differential biomarker expression in head and neck cancer correlates with anatomical localization. Pathology and Oncology Research, 17(3), 721–727.

    Article  PubMed  Google Scholar 

  • Tiruppathi, C., Brandsch, M., Miyamoto, Y., Ganapathy, V., & Leibach, F. H. (1992). Constitutive expression of the taurine transporter in a human colon carcinoma cell line. American Journal of Physiology, 263(5), G625–G631.

    CAS  PubMed  Google Scholar 

  • Ulanowska, A., Ligor, T., Michel, M., & Buszewski, B. (2010). Hyphenated and unconventional methods for searching volatile cancer biomarkers. Ecological Chemistry and Engineering S-Chemia I InzynieriaEkologiczna S. 17, 9–23

    CAS  Google Scholar 

  • Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Warburg, O., Ding, Y., Sharma, J., Paetz, M. B., Meixensberger, J., Gaunitz, F., et al. (1927). The metabolism of tumors in the body. The Journal of General Physiology, 8(6), 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, A. D. (2015). Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites, 5(1), 140–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyss, A., Hashibe, M., Chuang, S. C., Lee, Y. C. A., Zhang, Z. F., Yu, G. P., et al. (2013). Cigarette, cigar, and pipe smoking and the risk of head and neck cancers: Pooled analysis in the international head and neck cancer epidemiology consortium. American Journal of Epidemiology, 178(5), 679–690.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743–760.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Wishart, D. S., & Valencia, A. (2011). MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 27, 2342–2344.

    Google Scholar 

  • Yonezawa, K., Nishiumii, S., Kitamoto-Matsuda, J., Fujita, T., Morimoto, K., Yamashita, D., et al. (2013). Serum and tissue metabolomics of head and neck cancer. Cancer Genomics & Proteomics, 10, 233–238.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NEW INDIGO HCV project and Department of Biotechnology Grant No. BT/IN/NEW INDIGO/03/RS/2013. The authors are grateful to all the volunteers who participated in the study. RT, KT and RD acknowledges Department of Biotechnology, New Delhi and NEW INDIGO HCV project for research fellowship. The authors also acknowledge FCT—Fundação para a Ciência e Tecnologia (project PEst-UID/QUI/UI0674/2013, CQM, Portuguese Government funds) and ARDITI—Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (projects M1420-01- 0145-FEDER- 000005—Centro de Química da Madeira—CQM+ (Madeira 14–20), and M1420–09-5369- FSE-000001) for the financial support and the Post-Doctoral fellowship granted to Jorge A. M. Pereira.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the study: JSC, HAN, SR; Designed the study: RT, KT, JSC, HAN, SR; Performed the experiments: RT, KT; Compiled and analyzed data: RT, KT, JAMP, RD, SR; Statistical analysis: RT, KT, RD, HAN, SR; Drafted the manuscript: RT, KT, JAMP, RD, NK, DS, JSC, HAN, SR; Provided clinical samples: NK, DS; Provided chemicals and reagents: SR.

Corresponding author

Correspondence to Srikanth Rapole.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

The study was approved by ethics committee of National Centre for Cell Science and Armed Forces Medical College, Pune, India.

Informed consent

Prior informed consent was obtained from all the participants in the study with institutional review approval.

Research involving human participants and/or animals

All protocols and procedures were adhered to institutional ethical standards and/or research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 559 KB)

Supplementary material 2 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taware, R., Taunk, K., Pereira, J.A.M. et al. Investigation of urinary volatomic alterations in head and neck cancer: a non-invasive approach towards diagnosis and prognosis. Metabolomics 13, 111 (2017). https://doi.org/10.1007/s11306-017-1251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1251-6

Keywords

Navigation