Skip to main content
Log in

ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Experiments in metabolomics rely on the identification and quantification of metabolites in complex biological mixtures. This remains one of the major challenges in NMR/mass spectrometry analysis of metabolic profiles. These features are mandatory to make metabolomics asserting a general approach to test a priori formulated hypotheses on the basis of exhaustive metabolome characterization rather than an exploratory tool dealing with unknown metabolic features.

Objectives

In this article we propose a method, named ASICS, based on a strong statistical theory that handles automatically the metabolites identification and quantification in proton NMR spectra.

Methods

A statistical linear model is built to explain a complex spectrum using a library containing pure metabolite spectra. This model can handle local or global chemical shift variations due to experimental conditions using a warping function. A statistical lasso-type estimator identifies and quantifies the metabolites in the complex spectrum. This estimator shows good statistical properties and handles peak overlapping issues.

Results

The performances of the method were investigated on known mixtures (such as synthetic urine) and on plasma datasets from duck and human. Results show noteworthy performances, outperforming current existing methods.

Conclusion

ASICS is a completely automated procedure to identify and quantify metabolites in 1H NMR spectra of biological mixtures. It will enable empowering NMR-based metabolomics by quickly and accurately helping experts to obtain metabolic profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso, A., Marsal, S., & Julià, A. (2015). Analytical methods in untargeted metabolomics: State of the art in 2015. Frontiers in Bioengineering and Biotechnology, 3, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves, A., Rantalainen, M., Holmes, E., Nicholson, J. K., & Ebbels, T. M. D. (2009). Analytic properties of statistical total correlation spectroscopy based information recovery in 1H NMR metabolic data sets. Analytical Chemistry, 81, 2075–2084.

    Article  PubMed  Google Scholar 

  • Astle, W., De Iorio, M., Richardson, S., Stephens, D., & Ebbels, T. M. D. (2012). A bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures. Journal of the American Statistical Association, 107(500), 1259–1271.

    Article  CAS  Google Scholar 

  • Blow, N. (2008). Metabolomics: Biochemistry’s new look. Nature, 455(7213), 697–700.

    Article  CAS  PubMed  Google Scholar 

  • Bonnefont, C. M., Guerra, A., Théron, L., Molette, C., Canlet, C., & Fernandez, X. (2014). Metabolomic study of fatty livers in ducks: Identification by 1H-NMR of metabolic markers associated with technological quality. Poultry Science, 93(6), 1542–1552.

    Article  CAS  PubMed  Google Scholar 

  • Bühlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applications. Springer: New York.

    Book  Google Scholar 

  • CDC (Center for Disease Control and Prevention). (2010). Bisphenol A and other environmental phenols and Parabens in urine. https://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/eph_e_met_phenols_parabens.pdf.

  • De Meyer, T., Sinnaeve, D., Van Gasse, B., Tsiporkova, E., Rietzschel, E. R., De Buyzere, M. L., et al. (2008). NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Analytical Chemistry, 80, 3783–3790.

    Article  PubMed  Google Scholar 

  • Guitton, Y., Tremblay-Franco, M., Le Corguillé, G., Martin, J.-F., Pétéra, M., Roger-Mele, P., et al. (2017). Create, run, share, publish, and reference your LC-MS, GC-MS, and NMR data analysis workflows with Workflow4Metabolomics 3.0, the Galaxy online e-infrastructure for metabolomics. International Journal of Biochemistry and Cell Biology. doi:10.1016/j.biocel.2017.07.002.

    PubMed  Google Scholar 

  • Hao, J., Astle, W., De Iorio, M., & Ebbels, T. M. D. (2012). BATMAN—an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics, 28(15), 2088–2090.

    Article  CAS  PubMed  Google Scholar 

  • Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J. G., & Ebbels, T. M. D. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nature Protocols, 9, 1416–1427.

    Article  CAS  PubMed  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer Series in Statistics.

  • Nicholson, J. K., & Lindon, J. C. (2008). Systems biology: Metabonomics. Nature, 455(7216), 1054–1056.

    Article  CAS  PubMed  Google Scholar 

  • Pontoizeau, C., Herrmann, T., Toulhoat, P., Elena-Herrmann, B., & Emsley, L. (2010). Targeted projection NMR spectroscopy for unambiguous metabolic profiling of complex mixtures. Magnetic Resonance in Chemistry, 48(9), 727–733.

    Article  CAS  PubMed  Google Scholar 

  • Ravanbakhsh, S., Liu, P., Bjordahl, T. C., Mandal, R., Grant, J. R., Wilson, M., et al. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE, 10(5), e0124219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simón-Manso, Y., Lowenthal, M. S., Kilpatrick, L. E., Sampson, M. L., Telu, K. H., Rudnick, P. A., et al. (2013). Metabolite profiling of a NIST standard reference material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Analytical Chemistry, 85(24), 11725–11731.

    Article  PubMed  Google Scholar 

  • Tardivel, P.J., Servien, R., & Concordet, D. (2017). A powerful mutiple testing procedure in linear Gaussian model. https://hal.archives-ouvertes.fr/hal-01322077.

  • Theron, L., Fernandez, X., Marty-Gasset, N., Pichereaux, C., Rossignol, M., Chambon, C., et al. (2011). Identification by proteomic analysis of early post-mortem markers involved in the variability in fat loss during cooking of mule duck “foie gras”. (2011). Journal of Agricultural and Food Chemistry, 59, 12617–12628.

    Article  CAS  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.

    Google Scholar 

  • Tredwell, G. D., Behrends, V., Geier, F. M., Liebeke, M., & Bundy, J. G. (2011). Between-person comparison of metabolite fitting for NMR-based quantitative metabolomics. Analytical Chemistry, 83(22), 8683–8687.

    Article  CAS  PubMed  Google Scholar 

  • Tulpan, D., Léger, S., Belliveau, L., Culf, A., & Čuperlović-Culf, M. (2011). MetaboHunter: an automatic approach for identification of metabolites from 1 H-NMR spectra of complex mixtures. BMC Bioinformatics, 12(1), 1.

    Article  Google Scholar 

  • Wang, K. C., Wang, S. Y., Kuo, C. H., & Tseng, Y. J. (2013). Distribution-based classification method for baseline correction of metabolomic 1D proton nuclear magnetic resonance spectra. Analytical Chemistry, 85(2), 1231–1239.

    Article  CAS  PubMed  Google Scholar 

  • Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78(13), 4430–4442.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is part of the project GMO90+ (Grant CHORUS 2101240982) from the French Ministry of Ecology, Sustainable Development and Energy within the national research program RiskOGM. Patrick Tardivel is partially supported by a PhD fellowship from GMO90+. The IDEX of Toulouse “Transversalité 2014” is thanked for its support to this project. The authors also thank the French National Infrastructure of Metabolomics and Fluxomics (MetaboHUB-ANR-11-INBS-0010) for their support. The authors thank Alyssa Bouville and Roselyne Gautier for help in the sample preparation and NMR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. C. Tardivel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding this work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tardivel, P.J.C., Canlet, C., Lefort, G. et al. ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics 13, 109 (2017). https://doi.org/10.1007/s11306-017-1244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1244-5

Keywords

Navigation