, 13:109 | Cite as

ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra

  • Patrick J. C. Tardivel
  • Cécile Canlet
  • Gaëlle Lefort
  • Marie Tremblay-Franco
  • Laurent Debrauwer
  • Didier Concordet
  • Rémi Servien
Original Article



Experiments in metabolomics rely on the identification and quantification of metabolites in complex biological mixtures. This remains one of the major challenges in NMR/mass spectrometry analysis of metabolic profiles. These features are mandatory to make metabolomics asserting a general approach to test a priori formulated hypotheses on the basis of exhaustive metabolome characterization rather than an exploratory tool dealing with unknown metabolic features.


In this article we propose a method, named ASICS, based on a strong statistical theory that handles automatically the metabolites identification and quantification in proton NMR spectra.


A statistical linear model is built to explain a complex spectrum using a library containing pure metabolite spectra. This model can handle local or global chemical shift variations due to experimental conditions using a warping function. A statistical lasso-type estimator identifies and quantifies the metabolites in the complex spectrum. This estimator shows good statistical properties and handles peak overlapping issues.


The performances of the method were investigated on known mixtures (such as synthetic urine) and on plasma datasets from duck and human. Results show noteworthy performances, outperforming current existing methods.


ASICS is a completely automated procedure to identify and quantify metabolites in 1H NMR spectra of biological mixtures. It will enable empowering NMR-based metabolomics by quickly and accurately helping experts to obtain metabolic profiles.


Metabolomics Nuclear magnetic resonance Identification of metabolites Quantification of metabolites NIST plasma 



This work is part of the project GMO90+ (Grant CHORUS 2101240982) from the French Ministry of Ecology, Sustainable Development and Energy within the national research program RiskOGM. Patrick Tardivel is partially supported by a PhD fellowship from GMO90+. The IDEX of Toulouse “Transversalité 2014” is thanked for its support to this project. The authors also thank the French National Infrastructure of Metabolomics and Fluxomics (MetaboHUB-ANR-11-INBS-0010) for their support. The authors thank Alyssa Bouville and Roselyne Gautier for help in the sample preparation and NMR analyses.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest regarding this work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11306_2017_1244_MOESM1_ESM.7z (1.1 mb)
Supplementary material 1 (7Z 1104 KB)
11306_2017_1244_MOESM2_ESM.docx (57 kb)
Supplementary material 2 (DOCX 56 KB)
11306_2017_1244_MOESM3_ESM.docx (25 kb)
Supplementary material 3 (DOCX 25 KB)


  1. Alonso, A., Marsal, S., & Julià, A. (2015). Analytical methods in untargeted metabolomics: State of the art in 2015. Frontiers in Bioengineering and Biotechnology, 3, 23.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alves, A., Rantalainen, M., Holmes, E., Nicholson, J. K., & Ebbels, T. M. D. (2009). Analytic properties of statistical total correlation spectroscopy based information recovery in 1H NMR metabolic data sets. Analytical Chemistry, 81, 2075–2084.CrossRefPubMedGoogle Scholar
  3. Astle, W., De Iorio, M., Richardson, S., Stephens, D., & Ebbels, T. M. D. (2012). A bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures. Journal of the American Statistical Association, 107(500), 1259–1271.CrossRefGoogle Scholar
  4. Blow, N. (2008). Metabolomics: Biochemistry’s new look. Nature, 455(7213), 697–700.CrossRefPubMedGoogle Scholar
  5. Bonnefont, C. M., Guerra, A., Théron, L., Molette, C., Canlet, C., & Fernandez, X. (2014). Metabolomic study of fatty livers in ducks: Identification by 1H-NMR of metabolic markers associated with technological quality. Poultry Science, 93(6), 1542–1552.CrossRefPubMedGoogle Scholar
  6. Bühlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applications. Springer: New York.CrossRefGoogle Scholar
  7. CDC (Center for Disease Control and Prevention). (2010). Bisphenol A and other environmental phenols and Parabens in urine.
  8. De Meyer, T., Sinnaeve, D., Van Gasse, B., Tsiporkova, E., Rietzschel, E. R., De Buyzere, M. L., et al. (2008). NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Analytical Chemistry, 80, 3783–3790.CrossRefPubMedGoogle Scholar
  9. Guitton, Y., Tremblay-Franco, M., Le Corguillé, G., Martin, J.-F., Pétéra, M., Roger-Mele, P., et al. (2017). Create, run, share, publish, and reference your LC-MS, GC-MS, and NMR data analysis workflows with Workflow4Metabolomics 3.0, the Galaxy online e-infrastructure for metabolomics. International Journal of Biochemistry and Cell Biology. doi: 10.1016/j.biocel.2017.07.002.PubMedGoogle Scholar
  10. Hao, J., Astle, W., De Iorio, M., & Ebbels, T. M. D. (2012). BATMAN—an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics, 28(15), 2088–2090.CrossRefPubMedGoogle Scholar
  11. Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J. G., & Ebbels, T. M. D. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nature Protocols, 9, 1416–1427.CrossRefPubMedGoogle Scholar
  12. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer Series in Statistics.Google Scholar
  13. Nicholson, J. K., & Lindon, J. C. (2008). Systems biology: Metabonomics. Nature, 455(7216), 1054–1056.CrossRefPubMedGoogle Scholar
  14. Pontoizeau, C., Herrmann, T., Toulhoat, P., Elena-Herrmann, B., & Emsley, L. (2010). Targeted projection NMR spectroscopy for unambiguous metabolic profiling of complex mixtures. Magnetic Resonance in Chemistry, 48(9), 727–733.CrossRefPubMedGoogle Scholar
  15. Ravanbakhsh, S., Liu, P., Bjordahl, T. C., Mandal, R., Grant, J. R., Wilson, M., et al. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE, 10(5), e0124219.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Simón-Manso, Y., Lowenthal, M. S., Kilpatrick, L. E., Sampson, M. L., Telu, K. H., Rudnick, P. A., et al. (2013). Metabolite profiling of a NIST standard reference material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Analytical Chemistry, 85(24), 11725–11731.CrossRefPubMedGoogle Scholar
  17. Tardivel, P.J., Servien, R., & Concordet, D. (2017). A powerful mutiple testing procedure in linear Gaussian model.
  18. Theron, L., Fernandez, X., Marty-Gasset, N., Pichereaux, C., Rossignol, M., Chambon, C., et al. (2011). Identification by proteomic analysis of early post-mortem markers involved in the variability in fat loss during cooking of mule duck “foie gras”. (2011). Journal of Agricultural and Food Chemistry, 59, 12617–12628.CrossRefPubMedGoogle Scholar
  19. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.Google Scholar
  20. Tredwell, G. D., Behrends, V., Geier, F. M., Liebeke, M., & Bundy, J. G. (2011). Between-person comparison of metabolite fitting for NMR-based quantitative metabolomics. Analytical Chemistry, 83(22), 8683–8687.CrossRefPubMedGoogle Scholar
  21. Tulpan, D., Léger, S., Belliveau, L., Culf, A., & Čuperlović-Culf, M. (2011). MetaboHunter: an automatic approach for identification of metabolites from 1 H-NMR spectra of complex mixtures. BMC Bioinformatics, 12(1), 1.CrossRefGoogle Scholar
  22. Wang, K. C., Wang, S. Y., Kuo, C. H., & Tseng, Y. J. (2013). Distribution-based classification method for baseline correction of metabolomic 1D proton nuclear magnetic resonance spectra. Analytical Chemistry, 85(2), 1231–1239.CrossRefPubMedGoogle Scholar
  23. Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78(13), 4430–4442.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Patrick J. C. Tardivel
    • 1
  • Cécile Canlet
    • 1
    • 2
  • Gaëlle Lefort
    • 3
  • Marie Tremblay-Franco
    • 1
    • 2
  • Laurent Debrauwer
    • 1
    • 2
  • Didier Concordet
    • 1
  • Rémi Servien
    • 1
  1. 1.ToxalimUniversité de Toulouse, INRA, ENVT, INP-Purpan, UPSToulouseFrance
  2. 2.Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and FluxomicsToulouseFrance
  3. 3.GenPhySEUniversité de Toulouse, INRA, ENVTCastanet TolosanFrance

Personalised recommendations