Profiling of faecal water and urine metabolites among Papua New Guinea highlanders believed to be adapted to low protein intake

Abstract

Introduction

Adequate amount of proteins from foods are normally needed to maintain muscle mass of the human body. Although protein intakes of Papua New Guinea (PNG) highlanders are less than biologically adequate, protein deficiency related disorders have rarely been reported. It has been postulated that gut microbiota play a role in such low-protein-adaptation.

Objective

To explore underlying biological mechanisms of low-protein adaptation among PNG highlanders by investigating metabolomic profiles of faecal water and urine.

Methods

We performed metabolome analysis using faecal water extracted from faecal samples of PNG highlanders, PNG non-highlanders and Japanese subjects. We paid special attention to amino acids and other metabolites produced by gut microbiota, as well as to metabolites involved in nitrogen recycling in the human gut.

Results

Our results indicated that amino acid levels were higher in faecal water from PNG highlanders than PNG non-highlanders, but amino acid levels did not differ between PNG highlanders and Japanese subjects. Among PNG highlander samples, amino acid levels tended to be higher in those who consumed less protein.

Conclusion

We speculated that a greater proportion of urea was excreted to the intestine among the PNG highlanders than other groups, and that the urea was used for nitrogen salvage. Intestinal bacteria are essential for producing ammonia from urea and also for producing amino acids from ammonia, which is a key process in low-protein adaptation. Profiling the gut microbiota of PNG highlanders is an important avenue for further research into the mechanisms of low-protein adaptation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bergen, W. G., Wu, G. (2009). Intestinal nitrogen recycling and utilization in health and disease. Journal of Nutrition, 139(5), 821–825.

    CAS  Article  PubMed  Google Scholar 

  2. Bistrian, B. R. (1990). Recent advances in parenteral and enteral nutrition: A personal perspective. The Journal of Parenteral and Enteral Nutrition, 14(4), 329–334.

    CAS  Article  PubMed  Google Scholar 

  3. Bourke, R. M. (1985). Sweet potato (Ipomoea batatas) production and research in Papua New Guinea. Papua New Guinea Journal of Agriculture, Forestry and Fisheries, 33(3–4), 89–108.

    Google Scholar 

  4. Date, C., Baba, M., Kajiwara, N. M., Minamide, T., Fujita, Y., Ichikawa, M., Miyatani, S., Hayashi, M., Tanaka, H., Heywood, P., Alpers, M., & Koishi, H. (1988). Nutritional status of some Papua New Guinea highlanders as assessed by physical measurements and blood analysis. Ecology of Food and Nutrition, 20, 185–196.

    Article  Google Scholar 

  5. De Angelis, M., Montemurno, E., Piccolo, M., Vannini, L., Lauriero, G., Maranzano, V., Gozzi, G., Serrazanetti, D., Dalfino, G., Gobbetti, M., Gesualdo, L. (2014). Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE, 9(6), e99006.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Debnam ES, Grimble GK. (2001) Methods for assessing intestinal absorptive function in relation to enteral nutrition. Current Opinion in Clinical Nutrition & Metabolic Care, 4(5):355–367.

    CAS  Article  Google Scholar 

  7. Di Cagno, R., De Angelis, M., De Pasquale, I., Ndagijimana, M., Vernocchi, P., Ricciuti, P., Gagliardi, F., Laghi, L., Crecchio, C., Guerzoni, M. E., Gobbetti, M., Francavilla, R (2011). Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiology, 11, 219.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Eben, H., Clements, F. W. (1947). Report of the New Guinea Nutrition Survey Expedition.

  9. Ferro-Luzzi, A., Norgan, N. G., & Durnin, J. V. (1975). Food intake, its relationship to body weight and age, and its apparent nutritional adequacy in New Guinean children. The American Journal of Clinical Nutrition, 28(12), 1443–1453.

    CAS  PubMed  Google Scholar 

  10. Greenhill, A. R., Tsuji, H., Ogata, K., Natsuhara, K., Morita, A., Soli, K., Larkins, J. A., Tadokoro, K., Odani, S., Baba, J., Naito, Y., Tomitsuka, E., Nomoto, K., Siba, P. M., Horwood, P. F., Umezaki, M. (2015). Characterization of the Gut Microbiota of Papua New Guineans Using Reverse Transcription Quantitative PCR. PLoS ONE, 10(2), e0117427.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hipsley, E. H., & Clements, F. W. (1950). Reports of the New Guinea nutrition expedition 1947. Canberra: Department of External Territories.

    Google Scholar 

  12. Itoh, S., Sugawa-Katayama, Y., Koishi, H., & Izumi, S. (1982). Serum concentration of protein, triglyceride, β-lipoproteins and cholesterol in Papua New Guinean highlanders. The Journal of Nutritional Science and Vitaminology, 28, 411–417.

    CAS  Article  PubMed  Google Scholar 

  13. Jansson, J., Willing, B., Lucio, M., Fekete, A., Dicksved, J., Halfvarson, J., Tysk, C., & Schmitt-Kopplin, P. (2009). Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS ONE, 4(7), e6386.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kajiwara, N. M., Okuda, T., Miyatani, S., Date, C., Minamide, T., Fujita, Y., Ichikawa, M., Baba, M., Heywood, P., & Koishi, H. (1984). Nutritional status of Papua New Guinea highlanders: Seasonal comparison of festival and non-festival times. Journal of Food and Nutrition Research, 41, 55–61.

    Google Scholar 

  15. Kim, S. W., Suda, W., Kim, S., Oshima, K., Fukuda, S., Ohno, H., Morita, H., & Hattori, M. (2013). Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Research, 20(3), 241–253.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Klinder, A., Karlsson, P. C., Clune, Y., Hughes, R., Glei, M., Rafter, J. J., Rowland, I., Collins, J. K., & Pool-Zobel, B. L. (2007). Fecal water as a non-invasive biomarker in nutritional intervention: Comparison of preparation methods and refinement of different endpoints. Nutrition and Cancer, 57(2), 158–167.

    Article  PubMed  Google Scholar 

  17. Koishi, H. (1990). Nutritional adaptation of Papua New Guinea Highlanders. European Journal of Clinical Nutrition, 44(12), 851–911.

    CAS  PubMed  Google Scholar 

  18. Luyken, R., Pikaar, N. A., & Luekenko, F. W. (1964). Nutrition studies in New Guinea. The American Journal of Clinical Nutrition, 14, 13–27.

    CAS  PubMed  Google Scholar 

  19. Millward, D. J. (1979). Protein deficiency, starvation and protein metabolism. Proceedings of the Nutrition Society, 38(1), 77–88.

    CAS  Article  PubMed  Google Scholar 

  20. Ministry of Health, Labour and Welfare in Japan. (2015). Annual report of National Health and Nutrition Survey.

  21. Mora, D., & Arioli, S. (2014). Microbial urease in health and disease. PLoS Pathogens, 10(12), e1004472.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morita, A., Natsuhara, K., Tomitsuka, E., Odani, S., Baba, J., Tadokoro, K., Igai, K., Greenhill, A. R., Horwood, P. F., Soli, K. W., Phuanukoonnon, S., Siba, P. M., & Umezaki, M. (2015). Development, validation, and use of a semi-quantitative food frequency questionnaire for assessing protein intake in Papua New Guinean Highlanders. American Journal of Human Biology, 27(3), 349–357.

    Article  PubMed  Google Scholar 

  23. Naito, Y. I., Morita, A., Natsuhara, K., Tadokoro, K., Baba, J., Odani, S., Tomitsuka, E., Igai, K., Tsutaya, T., Yoneda, M., Greenhill, A. R., Horwood, P. F., Soli, K. W., Suparat, P., Siba, P. M., & Umezaki, M. (2015). Association of protein intakes and variation of diet-scalp hair nitrogen isotopic discrimination factor in Papua New Guinea Highlanders. American Journal of Physical Anthropology, 158(3), 359–370.

    Article  PubMed  Google Scholar 

  24. Nishijima, S., Suda, W., Oshima, K., Kim, S. W., Hirose, Y., Morita, H., & Hattori, M. (2016). The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Research, 23(2), 125–133.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Norgan, N. G., Ferroluz, A., & Durnin, J. V. G. (1974). Energy and nutrient intake and energy expenditure of 204 New Guineas adults. Philosophical transactions of the Royal Society of London B, Biological Science, 268(893), 309–348.

    CAS  Article  Google Scholar 

  26. Okuda, T., Kajiwara, N., Date, C., Sugimoto, K., Rikimaru, T., Fujita, Y., & Koishi, H. (1981). Nutritional status of Papua New Guinea highlanders. Journal of Nutritional Science and Vitaminology, 27, 319–331.

    CAS  Article  PubMed  Google Scholar 

  27. Okuda, T., Yamaguchi, Y., Fujita, Y., Minamide, T., Kajiwara, N. M., Miyatani, S., Rikimaru, T., Oi, Y., Izuta, A., Nakano, Y., & Koishi, H. (1984). The change of the diet on Papua New Guinea highlanders. Annual report of science of living (vol. 32, pp. 39–50). Osaka: Osaka City University.

    Google Scholar 

  28. Oomen, H. A. (1961). The nutrition situation in western New Guinea. Tropical and Geographical Medicine, 3, 321–335.

    Google Scholar 

  29. Oomen, H. A. (1972). Distribution of nitrogen and composition of nitrogen compounds in food, urine and faeces in habitual consumers of sweet potato and taro. Nutrition and Metabolism, 14(2), 65–82.

    CAS  Article  PubMed  Google Scholar 

  30. Picou, D., & Phillips, M. (1972). Urea metabolism in malnourished and recovered children receiving a high or low protein diet. American Journal of Clinical Nutrition, 25(11), 1261–1266.

    CAS  PubMed  Google Scholar 

  31. Richards, P., Metcalfe-Gibson, A., Ward, E. E., Wrong, O., & Houghton, B. J. (1967). Utilisation of ammonia nitrogen for protein synthesis in man, and the effect of protein restriction and uraemia. Lancet, 2(7521), 845–849.

    CAS  Article  PubMed  Google Scholar 

  32. Soga, T., & Heiger, D. N. (2000). Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 72(6), 1236–1241.

    CAS  Article  PubMed  Google Scholar 

  33. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2(5), 488–494.

    CAS  Article  PubMed  Google Scholar 

  34. Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M., & Nishioka, T. (2002). Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 74(10), 2233–2239.

    CAS  Article  PubMed  Google Scholar 

  35. Stewart, G. S., & Smith, C. P. (2005). Urea nitrogen salvage mechanisms and their relevance to ruminants, non-ruminants and man. Nutrition Research Reviews, 18(1), 49–62.

    CAS  Article  PubMed  Google Scholar 

  36. Takahashi, M., Benno, Y., & Mitsuoka, T. (1980). Utilization of ammonia nitrogen by intestinal bacteria isolated from pigs. Applied and Environmental Microbiology, 39(1), 30–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomé D, Bos C. (2000) Dietary protein and nitrogen utilization. Journal of Nutrition, 130(7):1868S–1873S.

    PubMed  Google Scholar 

  38. Walser, M., & Bodenlos, L. J. (1959). Urea metabolism in man. The Journal of Clinical Investigation, 38, 1617–1626.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Wapnir, R. A., Hawkins, R. L., & Lifshitz, F. (1972). Hyperaminoacidemia effects on intestinal transport of related amino acids. American Journal of Physiology, 223(4), 788–793.

    CAS  PubMed  Google Scholar 

  40. WHO/FAO/UNU. (2007). Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series, 935, 1–265.

    Google Scholar 

  41. Wolpert, E., Phillips, S. F., & Summerskill, W. H. (1971). Transport of urea and ammonia production in the human colon. Lancet, 2(7739), 1387–1390.

    CAS  Article  PubMed  Google Scholar 

  42. Younes, H., Alphonse, J. C., Behr, S. R., Demigné, C., & Rémésy, C. (1999). Role of fermentable carbohydrate supplements with a low-protein diet in the course of chronic renal failure: Experimental bases. American Journal of Kidney Diseases, 33(4), 633–646.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Funding Program for Next Generation World-Leading Researchers (LS024), Grants-in-Aid for Scientific Research (15H04430), Takeda Science Foundation, and the TANITA Healthy Weight Community Trust.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eriko Tomitsuka.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Ethical approval

This study was approved by the Research Ethics Committee of the Graduate School of Medicine, University of Tokyo (10188), the Institutional review Board of the Papua New Guinea Institute of Medical Research (1025), and the Medical Research Advisory Board of Papua New Guinea (07.18, 11.16).

Informed consent

Informed consent was obtained from all participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomitsuka, E., Igai, K., Tadokoro, K. et al. Profiling of faecal water and urine metabolites among Papua New Guinea highlanders believed to be adapted to low protein intake. Metabolomics 13, 105 (2017). https://doi.org/10.1007/s11306-017-1243-6

Download citation

Keywords

  • Gut microbiota
  • Metabolomics
  • CE-TOFMS