, 13:85 | Cite as

Profiling, isolation and structure elucidation of specialized acylsucrose metabolites accumulating in trichomes of Petunia species

  • Xiaoxiao Liu
  • Mollie Enright
  • Cornelius S. Barry
  • A. Daniel Jones
Original Article



Acylsugar specialized metabolites function as defenses against insect herbivores, and are the most abundant specialized metabolites produced in Solanaceous trichomes. Metabolite profiling provides the foundation for determining the genetic basis of specialized metabolism and its evolution.


To profile and identify acylsugar specialized metabolites in three Petunia species: P. axillaris, P. integrifolia and P. exserta.


Metabolites were profiled using ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOF MS). Metabolites were purified using solid phase extraction and HPLC, and structures were established using NMR spectroscopy.


Twenty-eight distinct acylsucrose formulas, representing a sampling of more than 100 different detected chemical forms, were purified from three Petunia species and structures have been proposed based on one- and two-dimensional NMR data. 15 of the 28 purified acylsugars were sucrose pentaesters that possess a malonyl group on the fructose ring. These malonate esters can be readily distinguished from other acylsugars based on distinct masses of pseudomolecular ions and fragment ions generated using multiplexed collision-induced dissociation. Chemical diversity of acylsugars was observed between Petunia species, particularly with respect to the lengths of acyl chains and specific acylation positions.


These findings suggest substrate selectivity of various acyltransferases in Petunia species.


Nuclear magnetic resonance (NMR) spectroscopy Petunia axillaris Petunia integrifolia Petunia exserta Specialized metabolite profiling Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOF MS) 



We thank members of the Solanum Trichome project team, notably Drs. Banibrata Ghosh, Swathi Nadakuduti, Zhenzhen Wang, Tony Schilmiller, Jing Ning, and Robert Last for helpful discussion and contributions to this effort. We thank the Michigan State University Mass Spectrometry and Metabolomics Core staff and Dr. Daniel Holmes of the MSU Max T. Rogers NMR Facility.


Research in the Barry and Jones laboratories is funded by National Science Foundation grants IOS-1025636 and IOS-1546617 (R. L. Last, PI). A.D.J. and C.S.B. acknowledge support from the USDA National Institute of Food and Agriculture, Hatch projects MICL02143 and MICL02265. M. E. was supported by the Plant Genomics at Michigan State University Summer Research Experiences for Undergraduates Program (NSF grant DBI-1358474, C. S. Barry, PI).

Compliance with ethical standards

Conflict of interest

Each author declares no conflict of interest with regard to the research presented in this article.

Ethical approval

This article does not contain any studies with human participants or with animals performed by any of the authors.

Supplementary material

11306_2017_1224_MOESM1_ESM.pdf (21.6 mb)
Supplementary material 1 (PDF 22080 KB)


  1. Balandrin, M. F., Klocke, J. A., Wurtele, E. S., & Bollinger, W. H. (1985). Natural plant chemicals: sources of industrial and medicinal materials. Science, 228, 1154–1160. doi: 10.1126/science.3890182.CrossRefPubMedGoogle Scholar
  2. Chortyk, O. T., Kays, S. J., & Teng, Q. (1997). Characterization of insecticidal sugar esters of Petunia. Journal of Agricultural and Food Chemistry, 45, 270–275. doi: 10.1021/jf960322f.CrossRefGoogle Scholar
  3. Cragg, G. M., & Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 100, 72–79. doi: 10.1016/j.jep.2005.05.011.CrossRefPubMedGoogle Scholar
  4. DellaPenna, D., & O’Connor, S. E. (2012). Plant science. Plant gene clusters and opiates. Science, 336, 1648–1649. doi: 10.1126/science.1225473.CrossRefPubMedGoogle Scholar
  5. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78. doi: 10.1002/mas.20108.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Duke, S. O., Canel, C., Rimando, A. M., Tellez, M. R., Duke, M. V., & Paul, R. N. (2000). Current and potential exploitation of plant glandular trichome productivity. Advances in Botanical Research Incorporating Advances in Plant Pathology, 31(2000 31), 121–151. doi: 10.1016/S0065-2296(00)31008-4.Google Scholar
  7. Ekanayaka, E. A., Celiz, M. D., & Jones, A. D. (2015). Relative mass defect filtering of mass spectra: A path to discovery of plant specialized metabolites. Plant Physiology, 167, 1221–1232. doi: 10.1104/pp.114.251165.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fahn, A. (2000). Structure and function of secretory cells. Advances in Botanical Research Incorporating Advances in Plant Pathology, 31(2000 31), 37–75. doi: 10.1016/S0065-2296(00)31006-0.Google Scholar
  9. Fan, P., et al. (2016). In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proceedings of the National Academy of Sciences of the United States of America, 113, E239–E248. doi: 10.1073/pnas.1517930113.CrossRefPubMedGoogle Scholar
  10. Forkner, R. E., & Hare, J. D. (2000). Genetic and environmental variation in acyl glucose ester production and glandular and nonglandular trichome densities in Datura wrightii. Journal of Chemical Ecology, 26, 2801–2823. doi: 10.1023/A:1026493927622.CrossRefGoogle Scholar
  11. Ghosh, B., & Jones, A. D. (2017). Profiling, characterization, and analysis of natural and synthetic acylsugars (sugar esters). Analytical Methods (San Diego, California), 9, 892–905. doi: 10.1039/C6AY02944B.Google Scholar
  12. Ghosh, B., Westbrook, T. C., & Jones, A. D. (2014). Comparative structural profiling of trichome specialized metabolites in tomato (Solanum lycopersicum) and S. habrochaites: acylsugar profiles revealed by UHPLC/MS and NMR. Metabolomics, 10, 496–507. doi: 10.1007/s11306-013-0585-y.CrossRefPubMedGoogle Scholar
  13. Glas, J. J., Schimmel, B. C., Alba, J. M., Escobar-Bravo, R., Schuurink, R. C., & Kant, M. R. (2012). Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 13, 17077–17103. doi: 10.3390/ijms131217077.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim, J., et al. (2012). Striking natural diversity in glandular trichome acylsugar composition is shaped by variation at the Acyltransferase2 locus in the wild tomato Solanum habrochaites. Plant Physiology, 160, 1854–1870. doi: 10.1104/pp.112.204735.CrossRefPubMedPubMedCentralGoogle Scholar
  15. King, R. R., Calhoun, L. A., Singh, R. P., & Boucher, A. (1990). Sucrose esters associated with glandular trichomes of wild Lycopersicon species. Phytochemistry, 29, 2115–2118. doi: 10.1016/0031-9422(90)83017-U.CrossRefGoogle Scholar
  16. King, R. R., Calhoun, L. A., Singh, R. P., & Boucher, A. (1993). Characterization of 2,3,4,3′-tetra-O-acylated sucrose esters associated with the glandular trichomes of Lycopersicon-typicum. Journal of Agricultural and Food Chemistry, 41, 469–473. doi: 10.1021/jf00027a023.CrossRefGoogle Scholar
  17. Kliebenstein, D. J., & Osbourn, A. (2012). Making new molecules - evolution of pathways for novel metabolites in plants. Current Opinion in Plant Biology, 15, 415–423. doi: 10.1016/j.pbi.2012.05.005.CrossRefPubMedGoogle Scholar
  18. Kraus, W. (2003). Investigation of biologically active natural products using online LC-bioassay, LC-NMR, and LC-MS techniques. Journal of Toxicology-Toxin Reviews, 22, 495–508. doi: 10.1081/Txr-120026909.CrossRefGoogle Scholar
  19. Kroumova, A. B., & Wagner, G. J. (2003). Different elongation pathways in the biosynthesis of acyl groups of trichome exudate sugar esters from various Solanaceous plants. Planta, 216, 1013–1021. doi: 10.1007/s00425-002-0954-7.PubMedGoogle Scholar
  20. Kroumova, A. B., Zaitlin, D., & Wagner, G. J. (2016). Natural variability in acyl moieties of sugar esters produced by certain tobacco and other Solanaceae species. Phytochemistry, 130, 218–227. doi: 10.1016/j.phytochem.2016.05.008.CrossRefPubMedGoogle Scholar
  21. Kulcheski, F. R., et al. (2006). Molecular phylogenetic analysis of Petunia Juss. (Solanaceae). Genetica, 126, 3–14. doi: 10.1007/s10709-005-1427-2.CrossRefPubMedGoogle Scholar
  22. Leckie, B. M., Halitschke, R., De Jong, D. M., Smeda, J. R., Kessler, A., & Mutschler, M. A. (2014). Quantitative trait loci regulating the fatty acid profile of acylsugars in tomato. Molecular Breeding, 34, 1201–1213. doi: 10.1007/s11032-014-0110-7.CrossRefGoogle Scholar
  23. Maluf, W. R., et al. (2010). Broad-spectrum arthropod resistance in hybrids between high- and low-acylsugar tomato lines. Crop Science, 50, 439–450. doi: 10.2135/cropsci2009.01.0045.CrossRefGoogle Scholar
  24. McKenzie, C. L., & Puterka, G. J. (2004). Effect of sucrose octanoate on survival of nymphal and adult Diaphorina citri (Homoptera: Psyllidae). Journal of Economic Entomology, 97, 970–975. doi: 10.1603/0022-0493(2004)097[0970:eosoos];2.CrossRefPubMedGoogle Scholar
  25. Moser, D., Klaiber, I., Vogler, B., & Kraus, V. (1999). Molluscicidal and antibacterial compounds from Petunia hybrida. Pesticide Science, 55, 336–339. doi: 10.1002/ps.2780550314.CrossRefGoogle Scholar
  26. Ohya, I., Shinozaki, Y., Tobita, T., Takahashi, H., & Matsuzaki, T. (1996). Sucrose esters from the surface lipids of Petunia hybrida. Phytochemistry, 41, 787–789. doi: 10.1016/0031-9422(95)00679-6.CrossRefGoogle Scholar
  27. Rodriguez, A. E., Tingey, W. M., & Mutschler, M. A. (1993). Acylsugars of Lycopersicon-pennellii deter settling and feeding of the green peach aphid (Homoptera, Aphididae). Journal of Economic Entomology, 86, 34–39.CrossRefGoogle Scholar
  28. Schilmiller, A., et al. (2010). Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. The Plant Journal, 62, 391–403. doi: 10.1111/j.1365-313X.2010.04154.x.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Schilmiller, A. L., Charbonneau, A. L., & Last, R. L. (2012). Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proceedings of the National Academy of Sciences of the United States of America, 109, 16377–16382. doi: 10.1073/pnas.1207906109.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schilmiller, A. L., Last, R. L., & Pichersky, E. (2008). Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal, 54, 702–711. doi: 10.1111/j.1365-313X.2008.03432.x.CrossRefPubMedGoogle Scholar
  31. Singh, A. P., Singh, A. K., Begum, A. S., & Sahai, M. (2003). Two acyl sucroses from Petunia nyctaginiflora. Phytochemistry, 63, 485–489. doi: 10.1016/s0031-9422(03)00162-6.CrossRefPubMedGoogle Scholar
  32. Sumner, L. W., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211–221. doi: 10.1007/s11306-007-0082-2.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wagner, G. J. (1991). Secreting glandular trichomes - more than just hairs. Plant Physiology, 96, 675–679. doi: 10.1104/pp.96.3.675.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Weinhold, A., & Baldwin, I. T. (2011). Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proceedings of the National Academy of Sciences of the United States of America, 108, 7855–7859. doi: 10.1073/pnas.1101306108.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryMichigan State UniversityEast LansingUSA
  2. 2.Department of ChemistryGordon CollegeWenhamUSA
  3. 3.Department of HorticultureMichigan State UniversityEast LansingUSA
  4. 4.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations