Skip to main content
Log in

Genotypic and metabolic approaches towards the segregation of Klebsiella pneumoniae strains producing different antibiotic resistant enzymes

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Genotype and metabolomic variation are important for bacterial survival and adaptation to environmental changes.

Objectives

In this study, we compared the relationship among Klebsiella pneumoniae strains based on their genotypic and metabolic profiles. In addition, we also evaluated the association of the relationship with beta-lactamase production.

Methods

A total of 53 K. pneumoniae strains isolated in 2013–2014 from a tertiary teaching hospital in Malaysia were subjected to antimicrobial susceptibility testing (AST) via disk diffusion method and beta-lactamase production confirmation. The bacterial strains were also typed genotypically and metabolically via REP-PCR and 1H-NMR spectroscopy respectively. The concordance of the matrices derived based on genotypic and metabolic characterization was measured based on Spearman’s rank correlation.

Results

Spearman’s correlation rank showed that there is a weak but significant negative correlation between the genetic fingerprints and metabolic profiles of K. pneumoniae. Specifically, K. pneumoniae strains were clustered into five major clusters based on REP-PCR where most of the carbapenem resistant K. pneumoniae (CRKP) strains made up the major cluster. In contrast, metabolic patterns of the three groups (i.e. CRKP, extended spectrum beta-lactamase producing K. pneumoniae (ESBL), susceptible) of K. pneumoniae were clearly differentiated on PLS-DA score plots derived from 1H-NMR spectroscopy.

Conclusion

Overall, this study showed that metabolomic profiling using 1H-NMR spectroscopy is able to discriminate K. pneumoniae strains based on their beta-lactamase production status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad, N., Hashim, R., Shukor, S., Khalid, K. N. M., Shamsudin, F., & Hussin, H. (2013). Characterization of the first isolate of Klebsiella pneumoniae carrying New Delhi metallo-beta-lactamase and other extended spectrum beta-lactamase genes fr Malaysia. Journal of Medical Microbiology, 62, 804–806. doi:10.1099/Jmm.0.050781-0.

    Article  CAS  PubMed  Google Scholar 

  • Al-Marzooq, F., Yusof, M. Y. M., & Tay, S. T. (2015). Molecular analysis of antibiotic resistance determinants and plasmids in Malaysian isolates of multidrug resistant Klebsiella pneumoniae. PLoS ONE, 10(7), e0133654. doi:10.1371/journal.pone.0133654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bratu, S., Landman, D., Haag, R., Recco, R., Eramo, A., Alam, M., et al. (2005). Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: A new threat to our antibiotic armamentarium. Archives of Internal Medicine, 165, 1430–1435. doi:10.1001/archinte.165.12.1430.

    Article  CAS  PubMed  Google Scholar 

  • Bundy, J. G., Willey, T. L., Castell, R. S., Ellar, D. J., & Brindle, K. M. (2005). Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiology Letters, 242, 127–136. doi:10.1016/j.femsle.2004.10.048.

    Article  CAS  PubMed  Google Scholar 

  • Casadesus, J., & Low, D. A. (2013). Programmed heterogeneity: Epigenetic mechanisms in bacteria. The Journal of Biological Chemistry, 288(20), 13929–13935. doi:10.1074/jbc.R113.472274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascioferro, S., & Schillaci, D. (2014). The future of antibiotic: from the magic bullet to the smart bullet. Microbial & Biochemical Technology, 6(5), 1000e118. doi:10.4172/1948-5948.1000e118.

    Google Scholar 

  • Centers for Disease Control and Prevention (CDC), Office of the Associate Director for Communication, Digital Media Branch, Division of Public Affairs. (2013). Antibiotic resistance threats in the US. Centers for Disease Control and Prevention. Retrieved May 21, 2016, from http://www.cdc.gov/features/AntibioticResistanceThreats/index.html.

  • Cepni, E., & Gürel, F. (2012). Variation in extragenic repetitive DNA sequences in Pseudomonas syringae and potential use of modified REP primers in identification of closely related isolates. Genetics and Molecular Biology, 35(3), 650–656. doi:10.1590/S1415-47572012005000040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, P., Seth, A. K., Abercrombie, J. J., Mustoe, T. A., & Leung, K. P. (2014). Activity of imipenem against Klebsiella pneumoniae biofilms in vitro and in vivo. Antimicrobial Agents and Chemotherapy, 58(2), 1208–1213. doi:10.1128/AAC.01353-13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clinical and Laboratory Standards Institute. (2016). Performance standards for antimicrobial susceptibility testing, 26th edn. CLSI supplement M100S, Clinical and Laboratory Standards Institute.

  • Ding, Y., Liu, X., Chen, F., Di, H., Xu, B., Zhou, L., et al. (2014). Metabolic sensor governing bacteria virulence Staphlococcus aureus. Proceedings of National Academy of Sciences of the United States of America, 111(46), E4981–E4990. doi:10.1073/pnas.1411077111.

    Article  CAS  Google Scholar 

  • Fang, H., Ataker, F., Hedin, G., & Dornbusch, K. (2008). Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. Journal of Clinical Microbiology, 46(2), 707–712. doi:10.1128/Jcm.01943-07.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics: The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Foster, P. L. (2005). Stress responses and genetic variation in bacteria. Mutation Research, 569, 3–11. doi:10.1016/j.mrfmmm.2004.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs, T. M., Eisenreich, W., Heesemann, J., & Goeble, W. (2011). Metabolic adaptation of human pathogenic and unrelated nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiology Reviews, 36(2), 435–462. doi:10.1111/j.1574-6976.2011.00301.x.

    Article  PubMed  Google Scholar 

  • Gibney, E. R., & Nolan, C. M. (2010). Epigenetics and gene expression. Heredity, 105(1), 4–13. doi:10.1038/hdy.2010.54.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., An, J. N., Ma, Y. N., Ye, L. Y., Luo, Y. P., Tao, C. M., et al. (2016a). Nosocomial outbreak of OXA-48-producing Klebsiella pneumoniae in a Chinese Hospital: Clonal transmission of ST147 and ST383. PLoS ONE, 11(8), e0160754. doi:10.1371/journal.pone.0160754.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, Y. M., Zhou, H. J., Qin, L. Y., Pang, Z. Z., Qin, T., Ren, H. Y., et al. (2016b). Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS ONE, 11(4), e0153561. doi:10.1371/journal.pone.0153561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halouska, S., Zhang, B., Gaupp, R., Lei, S., Snell, E., Fenton, R. J., et al. (2013). Revisiting protocols for the NMR analysis of bacterial metabolomes. Journal of Integrated OMICS, 3(2), 120–137. doi:10.5584/jiomics.v3i2.139.

    PubMed  PubMed Central  Google Scholar 

  • Hamzan, N. I., Yean, C. Y., Rahman, R. A., Hasan, H., & Rahman, Z. A. (2015). Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Emerging Health Threats Journal, 8, 26011. doi:10.3402/ehtj.v8.26011.

    Article  PubMed  Google Scholar 

  • Helmi, U. M., Desa, M. N. M., Taib, N. M., Jamaluddin, T. Z. M. T., & Masri, S. N. (2016). Multiple ambler class A ESBL genes among Klebsiella pneumoniae isolates in a Malaysian district hospital. Tropical Biomedicine, 33(1), 109–119.

    Google Scholar 

  • Jacobs, D. M., Deltimple, N., van Velzen, E., van Dorsten, F. A., Bingham, M., Vaughan, E. E., et al. (2008). (1)H-NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR in Biomedicine, 21, 615–626. doi:10.1002/nbm.1233.

    Article  CAS  PubMed  Google Scholar 

  • Kane, A. L., Brutinel, E. D., Joo, H., Maysonet, R., VanDrisse, C. M., Kotloski, N. J., et al. (2016). Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor. Journal of Bacteriology, 198(8), 1337–1346. doi:10.1128/JB.00927-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korvin, D., Graydon, C., McNeil, L., & Mroczek, M. (2014). Banding profile of Rep-PCR experiments differs with varying extension times and annealing temperatures. Journal of Experimental Microbiology and Immunology, 18, 146–149.

    Google Scholar 

  • Lee, M. Y., Ko, K. S., Kang, C. I., Chung, D. R., Peck, K. R., & Song, J. H. (2011). High prevalence of CTX-M-15-producing Klebsiella pneumoniae isolates in Asian countries: Diverse clones and clonal dissemination. International Journal of Antimicrobial Agents, 38, 160–163. doi:10.1016/j.ijantimicag.2011.03.020.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Huang, C., Zheng, D., Wang, Y., & Yuan, Z. (2012). CcpA-mediated enhancement of sugar and amino acid metabolism in Lysinibacillus sphaericus by NMR-based metabolomics. Journal of Proteome Research, 11, 4654–4661. doi:10.1021/pr300469v.

    Article  CAS  PubMed  Google Scholar 

  • Lina, T. T., Khajanchi, B. K., Azmi, I. J., Islam, M. A., Mahmood, B., Akter, M., et al. (2014). Phenotypic and molecular characterization of extended-spectrum beta-lactamase-producing Escherichia coli in Bangladesh. PLoS ONE, 9(10), e108735. doi:10.1371/journal.pone.0108735.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobel, L., & Herskovits, A. A. (2016). Systems level analyses reveal multiple regulatory activities of CodY controlling metabolism, motility and virulence Listeria monocytogenes. PLoS Genetics, 12(2), e1005870. doi:10.1371/journal.pgen.1005870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis, P., Scott, K. P., Duncan, S. H., & Flint, H. J. (2007). Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology, 102, 1197–1208. doi:10.1111/j.1365-2672.2007.03322.x.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Du, J., Schwarzer, N. J., Gerbig-Smentek, E., Einsle, O., & Andrade, S. L. A. (2012). The formate channel FocA exports the products of mixed-acid fermentation. Proceedings of National Academy of Sciences of the United States of America, 109(3), 13254–13259. doi:10.1073/pnas.1204201109.

    Article  CAS  Google Scholar 

  • Martin, F. P. J., Sprenger, N., Yap, I. K. S., Wang, Y. L., Bibiloni, R., Rochat, F., et al. (2009). Panorganismal gut microbiome-host metabolic crosstalk. Journal of Proteome Research, 8(4), 2090–2105. doi:10.1021/pr801068x.

    Article  CAS  PubMed  Google Scholar 

  • Mohsen, S. M. Y., Hamzah, H. A., Al-Deen, M. M. I., & Baharudin, R. (2016). Antimicrobial susceptibility of Klebsiella pneumoniae and Escherichia coli with extended-spectrum-lactamase associated genes in Hospital Tengku Ampuan Afzan, Kuantan, Pahang. The Malaysian Journal of Medical Sciences, 23(2), 14–20.

    Google Scholar 

  • Navarro Llorens, J. M., Tormo, A., & Martinez-Garcia, E. (2010). Stationary phase in Gram-negative bacteria. FEMS Microbiology Reviews, 34(4), 476–495. doi:10.1111/j.1574-6976.2010.00213.x.

    Article  PubMed  Google Scholar 

  • Navia, M. M., Capitano, L., Ruiz, J., Vargas, M., Urassa, H., Schellemberg, D., et al. (1999). Typing and characterization of mechanisms of resistance of Shigella spp. isolated from feces of children under 5 years of age from Ifakara, Tanzania. Journal of Clinical Microbiology, 37(10), 3113–3117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odén, A., & Wedel, H. (1975). Arguments for Fisher’s permutation test. The Annals of Statistics, 3(2), 518–520.

    Article  Google Scholar 

  • Parter, M., Kashtan, N., & Alon, U. (2007). Environmental variability and modularity of bacterial metabolic networks. BMC Evolutionary Biology, 7(169), 1–8. doi:10.1186/1471-2148-7-169.

    Google Scholar 

  • Rampadarath, S., Puchooa, D., & Bal, S. (2015). Repetitive element palindromic PCR (rep-PCR) as a genetic tool to study interspecific diversity in Euphorbiaceae family. Electronic Journal of Biotechnology, 18, 412–417. doi:10.1016/j.ejbt.2015.09.003.

    Article  CAS  Google Scholar 

  • Richards, C. L., Bossdorf, O., & Pigliucci, M. (2010). What role does heritable epigenetic variation play in phenotypic evolution? BioScience, 60(3), 232–237. doi:10.1525/bio.2010.60.3.9.

    Article  Google Scholar 

  • Rohmer, L., Hocquet, D., & Miller, S. I. (2011). Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends in Microbiology, 19(7), 341–348. doi:10.1016/j.tim.2011.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawers, R. G., & Clark, D. P. (2004). Fermentative pyruvate and acetyl-coenzyme A metabolism. EcoSal Plus, 1(1). doi:10.1128/ecosalplus.3.5.3.

  • Smits, W. K., Kuipers, O. P., & Veening, J. W. (2006). Phenotypic variation in bacteria: The role of feedback regulation. Nature Reviews Microbiology, 4(4), 259–271. doi:10.1038/nrmicro1381.

    Article  CAS  PubMed  Google Scholar 

  • Somerville, G. A., & Proctor, R. A. (2009). At the crossroads of bacterial metabolism and virulence factor synthesis Staphylococci. Microbiology and Molecular Biology Reviews, 73(2), 233–248. doi:10.1128/MMBR.00005-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer, S., Gugliotta, A., Godecke, N., Hauser, H., & Wirth, D. (2016). Epigenetic modulations rendering cell-to-cell variability and phenotypic metastability. Journal of Genetics and Genomics, 43(8), 503–511. doi:10.1016/j.jgg.2016.05.008.

    Article  PubMed  Google Scholar 

  • Teh, C. S. J., Thong, K. L., Osawa, R., & Chue, K. H. (2011). Comparative PCR-based fingerprinting of Vibrio cholerae isolated in Malaysia. Journal of General Applied Microbiology, 57(1), 19–26.

    Article  CAS  Google Scholar 

  • Wilharm, G., & Heider, C. (2014). Interrelationship between type three secretion system and metabolism in pathogenic bacteria. Frontiers in Cellular and Infection Microbiology, 4(150), 1–10. doi:10.3389/fcimb.2014.00150.

    Google Scholar 

  • Wolfe, A. J. (2005). The acetate switch. Microbiology and Molecular Biology Reviews, 69(1), 12–50. doi:10.1128/MMBR.69.1.12-50.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, M. S., Wu, S., Causey, T. B., Bennett, G. N., & San, K. Y. (2008). Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metabolic Engineering, 10(2), 97–108. doi:10.1016/j.ymben.2007.10.003.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. L., Gu, B., Huang, M., Liu, H. Y., Xu, T., Xia, W. Y., et al. (2015). Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000–2012 in Asia. Journal of Thoracic Disease, 7(3), 376–385. doi:10.3978/j.issn.2072-1439.2014.12.33.

    PubMed  PubMed Central  Google Scholar 

  • Yap, I. K., Kho, M. T., Lim, S. H., Ismail, N. H., Yam, W. K., & Chong, C. W. (2015). Acclimatisation-induced stress influenced host metabolic and gut microbial composition change. Molecular Biosystems, 11(1), 297–306. doi:10.1039/c4mb00463a.

    Article  CAS  PubMed  Google Scholar 

  • Yap, I. K., Li, J. V., Saric, J., Martin, F. P., Davies, H., Wang, Y., et al. (2008). Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. Journal of Proteome Research, 7(9), 3718–3728. doi:10.1021/pr700864x.

    Article  CAS  PubMed  Google Scholar 

  • Yap, I. K. S., Angley, M., Veselkov, K. A., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2010). Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. Journal of Proteome Research, 9(6), 2996–3004. doi:10.1021/pr901188e.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Jantama, K., Shanmugam, K. T., & Ingram, L. O. (2009). Reengineering Escherichia coli for succinate production in mineral salts medium. Applied and Environmental Microbiology, 75(24), 7807–7813. doi:10.1128/AEM.01758-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Fundamental Research Grant Scheme (FRGS) from the Ministry of Education, Malaysia (Grant Number: FP023-2014A), University of Malaya Research Grant (UMRG) from University of Malaya (Grant Number: RP014B-14HTM) and Postgraduate Research Grant (PPP) from University of Malaya (Grant Number: PG028-2014B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Shuan Ju Teh.

Ethics declarations

Conflict of interest

Ye Mun Low, Ivan Kok Seng Yap, Kartini Abdul Jabar, Mohd Yasim Md Yusof, Chun Wie Chong and Cindy Shuan Ju Teh declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 19 KB)

11306_2017_1201_MOESM2_ESM.tif

Supplementary Fig. 1 Mean growth profiles (mean ± standard deviation) of the three groups of K. pneumoniae; CRKP, ESBL and susceptible. (TIF 143 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, Y.M., Yap, I.K.S., Abdul Jabar, K. et al. Genotypic and metabolic approaches towards the segregation of Klebsiella pneumoniae strains producing different antibiotic resistant enzymes. Metabolomics 13, 65 (2017). https://doi.org/10.1007/s11306-017-1201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1201-3

Keywords

Navigation