Skip to main content

Advertisement

Log in

Medium chain fatty acids in intrauterine growth restricted and small for gestational age pregnancies

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Low birth weight is associated with an increased risk of heart disease, high blood pressure and diabetes in adult life. Fetal growth is determined by nutrient availability, which is related to placenta nutrient transport. Medium chain fatty acids (MCFAs) are a particular class of nutrients, known to be a readily available energy source. Until now no data are reported on these MCFAs in low birth weight fetus.

Aim

This is a prospective study conducted in a tertiary center of prenatal diagnosis to investigate the maternal and fetal MCFAs levels in appropriate for gestational age (AGA), intrauterine growth restricted (IUGR), and small for gestational age (SGA) pregnancies.

Method

The plasmatic levels of MCFAs in AGA, IUGR and SGA mother–infant pairs were quantified by gas chromatography–mass spectrometry. The analytical method had a linearity range of 0.1–50 mg/L and a limit of quantification of 0.03 mg/L. Reduced fetal growth was defined as an estimated fetal weight below the 3rd–10th percentile for gestational age, with (IUGR) or without (SGA) fetal Doppler abnormalities.

Result

Maternal and fetal MCFAs plasma levels were significantly different among SGA, IUGR and AGA groups. Additionally, the observed MCFAs fetal to maternal ratio is >1 for IUGR group, whilst for SGA and AGA the fetal to maternal ratio is less than one.

Conclusion

Changes in MCFAs levels in fetal and maternal plasma are not related to placental functionality or nutrients availability, suggesting the presence of a de novo biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvino, G., Cozzi, V., Radaelli, T., Ortega, H., Herrera, E., & Cetin, I. (2008). Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia. Pediatric Research, 64, 615–620. doi:10.1203/PDR.0b013e31818702a2.

    Article  CAS  PubMed  Google Scholar 

  • Anju Suhag, V. B. (2013). Intrauterine growth restriction (IUGR): Etiology and diagnosis. Current Obstetrics and Gynecology Report 2, 102–111.

    Article  Google Scholar 

  • Arsic, A., et al. (2012). Different fatty acid composition of serum phospholipids of small and appropriate for gestational age preterm infants and of milk from their mothers. Hippokratia 16, 230–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, D. J. (2006). Adult consequences of fetal growth restriction. Clinical Obstetrics and Gynecology, 49, 270–283.

    Article  PubMed  Google Scholar 

  • Barker, D. J. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261, 412–417. doi:10.1111/j.1365-2796.2007.01809.x.

    Article  CAS  PubMed  Google Scholar 

  • Baschat, A. A., & Gembruch, U. (2003). The cerebroplacental Doppler ratio revisited. Ultrasound in Obstetrics & Gynecology, 21, 124–127. doi:10.1002/uog.20.

    Article  CAS  Google Scholar 

  • Bobinski, R., & Mikulska, M. (2015). The ins and outs of maternal-fetal fatty acid metabolism. Acta Biochimica Polonica, 62, 499–507. doi:10.18388/abp.2015_1067.

    Article  CAS  PubMed  Google Scholar 

  • Bobiński, R., Mikulska, M., Mojska, H., & Simon, M. (2013). Comparison of the fatty acid composition of transitional and mature milk of mothers who delivered healthy full-term babies, preterm babies and full-term small for gestational age infants. European Journal of Clinical Nutrition, 67, 966–971. doi:10.1038/ejcn.2013.96.

    Article  PubMed  Google Scholar 

  • Bobiński, R., Mikulska, M., Mojska, H., & Ulman-Wlodarz, I. (2015). The dietary composition of women who delivered healthy full-term infants, preterm infants, and full-term infants who were small for gestational age. Biological Research for Nursing, 17, 495–502. doi:10.1177/1099800414556529.

    Article  PubMed  Google Scholar 

  • Brett, K. E., Ferraro, Z. M., Yockell-Lelievre, J., Gruslin, A., & Adamo, K. B. (2014). Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta. International Journal of Molecular Sciences, 15, 16153–16185. doi:10.3390/ijms150916153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cetin, I., G. Alvino (2009). Intrauterine growth restriction: implications for placental metabolism and transport. A review. Placenta 30 Suppl A, S77–82 doi:10.1016/j.placenta.2008.12.006.

  • Clayton, P. E., Cianfarani, S., Czernichow, P., Johannsson, G., Rapaport, R., & Rogol, A. (2007). Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. The Journal of Clinical Endocrinology and Metabolism, 92, 804–810. doi:10.1210/jc.2006-2017.

    Article  CAS  PubMed  Google Scholar 

  • Coomarasamy, A. (2002). Investigation and management of the small-for-gestational-age fetus. https://www.guideline.gov/summaries/summary/44347/the-investigation-and-management-of-the-smallforgestationalage-fetus.

  • Crotti, S., et al. (2016). Altered plasma levels of decanoic acid in colorectal cancer as a new diagnostic biomarker. Analytical and Bioanalytical Chemistry. doi:10.1007/s00216-016-9743-1.

    Google Scholar 

  • Demicheva, E., & Crispi, F. (2014). Long-term follow-up of intrauterine growth restriction: Cardiovascular disorders. Fetal Diagnosis and Therapy, 36, 143–153. doi:10.1159/000353633.

    Article  PubMed  Google Scholar 

  • Duttaroy, A. K. (2009). Transport of fatty acids across the human placenta: A review. Progress in Lipid Research, 48, 52–61. doi:10.1016/j.plipres.2008.11.001.

    Article  CAS  PubMed  Google Scholar 

  • Dutta-Roy, A. K. (2000). Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. The American Journal of Clinical Nutrition 71, 315S–22S.

    CAS  PubMed  Google Scholar 

  • Enzi, G., Zanardo, V., Caretta, F., Inelmen, E. M., & Rubaltelli, F. (1981). Intrauterine growth and adipose tissue development. The American Journal of Clinical Nutrition, 34, 1785–1790.

    CAS  PubMed  Google Scholar 

  • Festini, F., et al. (2004). Birth weight for gestational age centiles for Italian neonates. The journal of maternal-fetal & neonatal medicine, 15, 411–417. doi:10.1080/147670410001728223.

    Article  CAS  Google Scholar 

  • Figueras, F., & Gratacos, E. (2014). Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagnosis and Therapy, 36, 86–98. doi:10.1159/000357592.

    Article  PubMed  Google Scholar 

  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226, 497–509.

    CAS  PubMed  Google Scholar 

  • Frei, E. (2011). Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetology & Metabolic Syndrome, 3, 11. doi:10.1186/1758-5996-3-11.

    Article  CAS  Google Scholar 

  • Gauster, M., et al. (2007). Dysregulation of placental endothelial lipase and lipoprotein lipase in intrauterine growth-restricted pregnancies. The Journal of Clinical Endocrinology and Metabolism, 92, 2256–2263. doi:10.1210/jc.2006-2403.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, K. M., & Barker, D. J. (2001). Fetal programming and adult health. Public Health Nutrition, 4, 611–624.

    Article  CAS  PubMed  Google Scholar 

  • Greiner, R. C., Winter, J., Nathanielsz, P. W., & Brenna, J. T. (1997). Brain docosahexaenoate accretion in fetal baboons: Bioequivalence of dietary alpha-linolenic and docosahexaenoic acids. Pediatric Research, 42, 826–834. doi:10.1203/00006450-199712000-00018.

    Article  CAS  PubMed  Google Scholar 

  • Haggarty, P. (2002). Placental regulation of fatty acid delivery and its effect on fetal growth–a review. Placenta 23 Suppl A, S28–38 doi:10.1053/plac.2002.0791.

  • Haggarty, P. (2004). Effect of placental function on fatty acid requirements during pregnancy. European Journal of Clinical Nutrition, 58, 1559–1570. doi:10.1038/sj.ejcn.1602016.

    Article  CAS  PubMed  Google Scholar 

  • Haggarty, P. (2010). Fatty acid supply to the human fetus. Annual Review of Nutrition, 30, 237–255. doi:10.1146/annurev.nutr.012809.104742.

    Article  CAS  PubMed  Google Scholar 

  • Han, X. (2007). Neurolipidomics: Challenges and developments. Frontiers in Bioscience, 12, 2601–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanebutt, F. L., Demmelmair, H., Schiessl, B., Larque, E., & Koletzko, B. (2008). Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clinical Nutrition (Edinburgh, Scotland), 27, 685–693. doi:10.1016/j.clnu.2008.05.010.

    Article  CAS  Google Scholar 

  • Jansson, T., & Powell, T. L. (2013). Role of placental nutrient sensing in developmental programming. Clinical Obstetrics and Gynecology, 56, 591–601. doi:10.1097/GRF.0b013e3182993a2e.

    Article  PubMed  PubMed Central  Google Scholar 

  • Legrand, P., Catheline, D., Rioux, V., & Durand, G. (2002). Lauric acid is desaturated to 12:1n-3 by hepatocytes and rat liver homogenates. Lipids, 37, 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Paladini, D., et al. (2005). Fetal size charts for the Italian population. Normative curves of head, abdomen and long bones. Prenatal Diagnosis, 25, 456–464. doi:10.1002/pd.1158.

    Article  PubMed  Google Scholar 

  • Papamandjaris, A. A., MacDougall, D. E., & Jones, P. J. (1998). Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sciences, 62, 1203–1215.

    Article  CAS  PubMed  Google Scholar 

  • Roland, M. C., Friis, C. M., Godang, K., Bollerslev, J., Haugen, G., & Henriksen, T. (2014). Maternal factors associated with fetal growth and birthweight are independent determinants of placental weight and exhibit differential effects by fetal sex. PLoS ONE, 9, e87303. doi:10.1371/journal.pone.0087303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saenger, P., Czernichow, P., Hughes, I., & Reiter, E. O. (2007). Small for gestational age: short stature and beyond. Endocrine Reviews, 28, 219–251. doi:10.1210/er.2006-0039.

    Article  CAS  PubMed  Google Scholar 

  • Sanagi, M. M., Ling, S. L., Nasir, Z., Hermawan, D., W. A. W. Ibrahim, & Abu Naim, A. (2009). Comparison of signal-to-noise, blank determination, and linear regression methods for the estimation of detection and quantification limits for volatile organic compounds by gas chromatography. Journal of Aoac International, 92, 1833–1838.

    CAS  PubMed  Google Scholar 

  • Shoham-Vardi, I., Leiberman, J. R., & Kopernik, G. (1994). The association of primiparity with intrauterine growth retardation. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 53, 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Soothill, P. W., Bobrow, C. S., & Holmes, R. (1999). Small for gestational age is not a diagnosis. Ultrasound in Obstetrics & Gynecology, 13, 225–228. doi:10.1046/j.1469-0705.1999.13040225.x.

    Article  CAS  Google Scholar 

  • Turan, O. M., et al. (2008). Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound in Obstetrics & Gynecology, 32, 160–167. doi:10.1002/uog.5386.

    Article  CAS  Google Scholar 

  • Wheeler, S. J., Poston, L., Thomas, J. E., Seed, P. T., Baker, P. N., & Sanders, T. A. (2011). Maternal plasma fatty acid composition and pregnancy outcome in adolescents. The British Journal of Nutrition, 105, 601–610. doi:10.1017/S0007114510004083.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Grant Program for Young Investigator on Paediatric Research” 2013 of CARIPARO foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Crotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This study is conducted according to the principles expressed in the Declaration of Helsinki and was approved by the local ethics committee (protocol number 2260P). Written informed consent will be obtained from every individual enrolled.

Additional information

Silvia Visentin, Sara Crotti and Elena Donazzolo are equal contribute as first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visentin, S., Crotti, S., Donazzolo, E. et al. Medium chain fatty acids in intrauterine growth restricted and small for gestational age pregnancies. Metabolomics 13, 54 (2017). https://doi.org/10.1007/s11306-017-1197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1197-8

Keywords

Navigation