Skip to main content

Advertisement

Log in

New insights into the mechanistic action of methyldehydrodieugenol B towards Leishmania (L.) infantum via a multiplatform based untargeted metabolomics approach

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Leishmaniasis is a parasitic neglected disease affecting millions of people worldwide. Clinical practice resorts to long and costly treatments with a therapeutic arsenal limited to highly toxic drugs, often associated to adverse side effects. Additionally, resistant strains are reported to be increasing.

Aim

In this work, the mechanistic action of a drug candidate (methydehydrodieugenol B), isolated from twigs of Nectandra leucantha, towards Leishmania infantum was studied by a global metabolomics approach using GC-MS and RPLC-MS platforms.

Method

L. infantum promastigotes were grown in culture medium for 72 h and treated with methydehydrodieugenol B at 58.18 μg.mL-1 concentration; after 48 h treatment, enzyme activity was quenched, cells washed and frozen until analysis. For GC-MS analysis (Fiehn’s method), 1:1 methanol:water extracts were prepared and derivatized with O-methoxyamine in pyridine at room temperature for 90 min, followed by silylation with BSTFA/1% TMCS at 40 °C for 30 min. Pure methanolic extracts were also prepared and analyzed directly by RPLC-MS with a acetonitrile/water mobile phase acidulated with formic acid and gradient elution.

Result

Several amino acids, fatty acids, carbohydrates, and glycerolipids were found as discriminant metabolites, mostly decreased in treated samples. Due to the complexity of the parasite metabolism and the great diversity of altered metabolites, a multi-target mechanism was assigned to the drug candidate, where changes in the cell energy sources and in the lipid composition of the parasite plasma membrane were prominent.

Conclusion

These results contributed to elucidate the broad action of methyldehydrodieugenol B against Leishmania, paving the way in the search of novel alternative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvar, J., Croft, S., & Olliaro, P. (2006). Chemotherapy in the treatment and control of Leishmaniasis. Advances in Parasitology, 61, 223–274.

    Article  PubMed  Google Scholar 

  • Balaña-Fouce, R., Calvo-Álvarez, E., Álvarez-Velilla, R., Prada, C. F., Pérez-Pertejo, Y., & Reguera, R. M. (2012). Role of trypanosomatid’s arginase in polyamine biosynthesis and pathogenesis. Molecular and Biochemical Parasitology, 181(2), 85–93.

    Article  PubMed  Google Scholar 

  • Barret, M. P. (1997). The pentose phosphate pathway and parasitic protozoa. Parasitology Today, 13(1), 11–16.

    Article  Google Scholar 

  • Barrett, M. P., Bakker, B. M., & Breitling, R. (2010). Metabolomic systems biology of trypanosomes. Parasitology, 137(9), 1285–1290.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of Royal Statistical Society. Series B, 57(1), 289–300.

    Google Scholar 

  • Berg, M., Mannaert, A., Vanaerschot, M., Vander Auwera, G., & Dujardin, J. C. (2013). (Post-) Genomic approaches to tackle drug resistance in Leishmania. Parasitology, 140(12), 1492–1505.

    Article  CAS  PubMed  Google Scholar 

  • Berg, M., García-Hernández, R., Cuypers, B., Vanaerschot, M., Manzano, J. I., Poveda, J. A., Ferragut, J. A., Castanys, S., Dujardin, J. C., & Gamarro, F. (2015). Experimental resistance to drug combinations in Leishmania donovani: metabolic and phenotypic adaptations. Antimicrobial Agents and Chemotherapy, 59(4), 2242–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg, M., Vanaerschot, M., Jankevics, A., Cuypers, B., Maes, I., Mukherje, S., Khanal, B., Rijal, S., Roy, S., Opperdoes, F., Breitling, R., & Dujardin, J. C. (2013). Metabolic adaptations of Leishmania donovani in relation to differentiation, drug resistance, and drug pressure. Molecular Microbiology, 90(2), 428–442.

    CAS  PubMed  Google Scholar 

  • Boitz, J. M., Gilroy, C. A., Olenyik, T. D., Paradis, D., Perdeh, J., Dearman, K., Davis, M. J., Yates, P. A., Li, Y., Riscoe, M. K., Ullman, B., & Roberts, S. C. (2017). Arginase is essential for survival of Leishmania donovani promastigotes but not intracellular amastigotes. Infection and Immunity. doi:10.1128/IAI.00554-16.

  • Callahan, H. L., & Beverley, S. M. (1992). A member of the aldoketo reductase family confers methotrexate resistance in Leishmania. The Journal of Biological Chemistry, 267(34), 24165–24168.

    CAS  PubMed  Google Scholar 

  • Canuto, G. A. B., Castilho-Martins, E. A., Tavares, M. F. M., López-Gonzálvez, A., Rivas, L., & Barbas, C. (2012). CE-ESI-MS metabolic fingerprinting of Leishmania resistance to antimony treatment. Electrophoresis, 33(12), 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  • Canuto, G. A. B., Castilho-Martins, E. A., Tavares, M. F. M., Rivas, L., Barbas, C., & López-Gonzálvez, A. (2014). Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Analytical and Bioanalytical Chemistry, 406(14), 3459–3476.

    Article  CAS  PubMed  Google Scholar 

  • Canuto, G. A. B., da Cruz, P. L. R., Faccio, A. T., Klassen, A., & Tavares, M. F. M. (2015). Neglected diseases prioritized in Brazil under the perspective of metabolomics. A review. Electrophoresis, 36(18), 2336–2347.

    Article  CAS  Google Scholar 

  • Ciborowski, M., Rupérez, F. J., Martínez-Alcázar, M. P., Angulo, S., Radziwon, P., Olszanski, R., Kloczko, J., & Barbas, C. (2010). Metabolomic approach with LC-MS reveals significant effect of pressure on diver’s plasma. Journal of Proteome Research, 9(8), 4131–4137.

    Article  CAS  PubMed  Google Scholar 

  • Creek, D., Anderson, J., McConville, M. J., & Barret, M. P. (2012). Metabolomic analysis of trypanosomatid protozoa. Molecular and Biochemical Parasitology, 181(2), 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Creek, D. J., & Barrett, M. P. (2014). Determination of antiprotozoal drug mechanisms by metabolomics approaches. Parasitology, 141(1), 83–92.

    Article  PubMed  Google Scholar 

  • da Costa-Silva, T. A., Grecco, S. S., de Sousa, F. S., Lago, J. H. G., Martins, E. G. A., Terrazas, C. A., Varikuti, S., Owens, K. L., Beverley, S. M., Satoskar, A. R., & Tempone, A. G. (2015). Immunomodulatory and antileishmanial activity of phenylpropanoid dimers isolated from Nectandra leucantha. Journal of Natural Products, 78(4), 653–657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly, J. W. (2004). Marine toxins and nonmarine toxins: convergence or symbiotic organisms? Journal of Natural Products, 67(8), 1211–1215.

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira, D. R., Tintino, S. R., Braga, M. F., Boligon, A. A., Athayde, M. L., Coutinho, H. D., de Menezes, I. R., & Fachinetto, R. (2015). In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. Biomed Research International. doi:10.1155/2015/292797.

    Google Scholar 

  • Ellis, D. I., Dunn, W. B., Grifin, J. L., Allwood, J. W., & Goodacre, R. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 8(9), 1243–1266.

    Article  CAS  PubMed  Google Scholar 

  • El-Shitany, N. A., Shaala, L. A., Abbas, A. T., Abdel-Dayem, U. A., Azhar, E. I., Ali, S. S., van Soest, R. W., & Youssef, D. T. (2015). Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the red sea marine sponge Xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS One, 10(9), e0138917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171.

    Article  CAS  PubMed  Google Scholar 

  • García, A., & Barbas, C. (2011). Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. In T. O. Metz (Ed.), Metabolic Profiling, Methods in Molecular Biology (pp. 191–204). New York: Springer.

    Chapter  Google Scholar 

  • Grecco, S. S., Sousa, F. S., Jerz, G., Jones, P. G., da Costa-Silva, T. A., Tempone, A. G., Martins, E. G. A., & Lago, J. H. G. (2016). Antileishmanial and antitrypanosomal neolignans from leaves of Nectandra leucantha Ness and Mart (Lauraceae). Planta Medica, submitted.

  • Hasne, M. P., & Ullman, B. (2005). Identification and Characterization of a Polyamine Permease from the Protozoan Parasite Leishmania major. The Journal of Biological Chemistry, 280(15), 15188–15194.

    Article  CAS  PubMed  Google Scholar 

  • Huch, J. H., Roos, B., Jakobs, C., van der Knaap, M. S., & Verhoeven, N. M. (2004). Evaluation of pentitol metabolism in mammalian tissues provides new insight into disorders of human sugar metabolism. Molecular Genetics and Metabolism, 82(3), 231–237.

    Article  Google Scholar 

  • Kamburov, A., Cavill, R., Ebbels, T. M., Herwig, R., & Keun, H. C. (2011). Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics, 27(20), 2917–2918.

    Article  CAS  PubMed  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., & Fiehn, O. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81(24), 10038–10048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehnbaum, N. L., & Britz-McKibbin, P. (2013). New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chemical Reviews, 133(4), 2437–2468.

    Article  Google Scholar 

  • Lee, S. H., Stephens, J. L., & Englund, P. T. (2007). A fatty-acid synthesis mechanism specialized for parasitism. Nature Reviews Microbiology, 5(4), 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Murray, H. W., Berman, J. D., Davies, C. R., & Saravia, N. G. (2005). Advances in leishmaniasis. Lancet, 366(9496), 1561–1577.

    Article  CAS  PubMed  Google Scholar 

  • Paget, T., Haroune, N., Bagchi, S., & Jarroll, E. (2013). Metabolomics and protozoan parasites. Acta Parasitology, 58(2), 127–131.

    CAS  Google Scholar 

  • Pécoul, B. (2004). New drugs for neglected diseases: from pipeline to patients. PLoS Medicine, 1(1), e6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Persico, M., Di Dato, A., Orteca, N., Cimino, P., Novellino, E., Fattorusso, C (2016). Use of integrated computational approaches in the search for new therapeutic agents. Molecular Informatics, 35(8–9), 309–325.

    Article  CAS  PubMed  Google Scholar 

  • Putri, S. P., Yamamoto, S., Tsugawa, H., & Fukusaki, E. (2013). Current metabolomics: Technological advances. Journal of Bioscience and Bioengineering, 116(1), 9–16.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. (2016). R: a language and environmental for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.

  • Ramakrishnan, S., Serricchio, M., Striepen, B., & Bütikofer, P. (2013). Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Progress Lipid Research, 52(4), 488–512.

    Article  CAS  Google Scholar 

  • Rocha, L. G., Almeida, J. R. G. S., Macêdo, R. O., & Barbosa-Filho, J. M. (2005). A review of natural products with antileishmanial activity. Phytomedicine, 12(6–7), 514–535.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, L. C., Barbosa-Filho, J. M., de Oliveira, M. R., Néris, P. L. N., Borges, F.V.P., & Mioso, R. (2016). Synthesis and antileishmanial activity of natural dehydrodieugenol and its mono and dimethyl ethers. Chemistry & Biodiversity, 13(7), 870–874.

    Article  CAS  Google Scholar 

  • Rodriguez-Contreras, D., & Hamilton, N. (2014). Gluconeogenesis in Leishmania mexicana: Contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase. The Journal of Biological Chemistry, 289(47), 32989–33000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo, D., Canuto, G. A. B., Castilho-Martins, E. A., Tavares, M. F. M., Barbas, C., López-Gonzálvez, Á., & Rivas, Luis (2015). A multiplatform metabolomics approach to the basis of antimonial action and resistance in Leishmania infantum. PLoS ONE, 10(7), e0130675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salek, R. M., Steinbeck, C., Viant, M. R., Goodracre, R., & Dunn, W. B. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience, 2(1), doi:10.1186/2047-217X-2-13.

  • Scheltema, R. A., Decuypere, S., t’Kindt, R., Dujardin, J. C., Coombs, G. H., & Breitling, R. (2010). The potential of metabolomics for Leishmania research in the post-genomics era. Parasitology, 137(9), 1291–1302.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, T. J., Khalid, S. A., Romanha, A. J., Alves, T. M., Biavatti, M. W., Brun, R., da Costa, F. B., de Castro, S. L., Ferreira, V. F., de Lacerda, M. V., Lago, J. H., Leon, L. L., Lopes, N. P., das Neves Amorim, R. C., Niehues M., Ogungbe, I. V., Pohlit, A. M., Scotti, M. T., Setzer, W. N., de N C Soeiro, M., Steindel, M., & Tempone, A. G. (2012a). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part I. Current Medicinal Chemistry, 19(14), 2128–2175.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, T. J., Khalid, S. A., Romanha, A. J., Alves, T. M., Biavatti, M. W., Brun, R., da Costa, F. B., de Castro, S. L., Ferreira, V. F., de Lacerda, M. V., Lago, J. H., Leon, L. L., Lopes, N. P., das Neves Amorim, R. C., Niehues M., Ogungbe, I. V., Pohlit, A. M., Scotti, M. T., Setzer, W. N., de N C Soeiro, M., Steindel, M., & Tempone, A. G. (2012b). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part II. Current Medicinal Chemistry, 19(14), 2176–2228.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, C. D., Lonchamp, J., Downing, T., Imamura, H., Freeman, T. M., Cotton, J. A., Sanders, M., Blackburn, G., Dujardin, J. C., Rijal, S., Khanal, B., Illingworth, C. J. R., Coombs, G. H., & Carter, K. C. (2015). In vitro selection of miltefosine in promastigotes of Leishmania donovani from Nepal: genomic and metabolomics characterization. Molecular Microbiology, 99(6), 1134–1148.

    Article  Google Scholar 

  • Singh, S., & Mandlik, V. (2015). Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation. Molecular Biosystems, 11(5), 1251–1259.

    Google Scholar 

  • Singh, A., & Mandal, D. (2011). A novel sucrose/H+ symport system and an intracellular sucrase in Leishmania donovani. International Journal of Parasitology, 41(8), 817–826.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., & Mandal, D. (2016). Purification and characterization of a novel intracellular sucrase enzyme of Leishmania donovani promastigotes. Biochemistry Research International. doi:10.1155/2016/7108261.

    Google Scholar 

  • Singh, N. (2006). Drug resistance mechanisms in clinical isolates of Leishmania donovani. The Indian Journal of Medicine Research, 123(3), 411–422.

    CAS  Google Scholar 

  • Singh, N., Kumar, M., & Singh, R. K. (2012). Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine, 5(6), 485–497.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., Mohapatra, D. P., & Sivakumar, R. (2000). Successful replacement of fetal calf serum with human urine for in vitro culture of Leishmania donovani. The Journal of Communicable Diseases, 32(4), 289–294.

    CAS  PubMed  Google Scholar 

  • Smith, C. A., Want, E. J., Tong, G. C., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Stone, V., Kudo, K. Y., August, P. M., Marcelino, T. B., & Matté, C. (2014). Polyols accumulated in ribose-5-phosphate isomerase deficiency increase mitochondrial superoxide production and improve antioxidant defenses in rats’ prefrontal cortex. International Journal of Developmental Neuroscience, 37(34), 21–25.

    Article  CAS  PubMed  Google Scholar 

  • t’Kind, R., Scheltema, R. A., Jankevics, A., Brunker, K., Rijal, S., Dujardin, J. C., Breitling, R., Watson, D. G., Coombs, G. H., & Decuypere, S. (2010). Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Neglected Tropical Diseases, 4(11), e904.

    Article  Google Scholar 

  • Tounsi, N., Meghari, S., Moser, M., & Djerdjouri, B. (2015). Lysophosphatidylcholine exacerbates Leishmania major-dendritic cell infection through interleukin-10 and a burst in arginase1 and indoleamine 2,3-dioxygenase activities. International Immunopharmacology, 25(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Uzcategui, N. L., Zhou, Y., Figarella, K., Mukhopadhyay, R., & Bhattacharjee, H. (2008). Alteration in glycerol and metalloid permeability by a single mutation in the extracellular C-loop of Leishmania major aquaglyceroporin LmAQP1. Molecular Microbiology, 70(6), 1477–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Knaap, M. S., Wevers, R. A., Struys, E. A., Verhoeven, N. M., Pouwels, P. J., Engelke, U. F., Feikema, W., Valk, J., & Jakobs, C. (1999). Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Annals of Neurology, 46(6), 925–928.

    Article  PubMed  Google Scholar 

  • Verhoeven, N. M., Huck, J. H., Roos, B., Struys, E. A., Salomons, G. S., Douwes, A. C., van der Knaap, M. S., & Jakobs, C. (2001). Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. American Journal of Human Genetics, 68(5), 1086–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veselkov, K. A., Vingara, L. K., Masson, P., Robinette, S. L., Want, E., Li, J. V., Barton, R. H., Boursier-Neyret, C., Walther, B., Ebbels, T. M., Pelczer, I., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2011). Optimizing preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information discovery. Analytical Chemistry, 83(15), 5864–5872.

    Article  CAS  PubMed  Google Scholar 

  • Villas-Bôas, S. G., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24(5), 613–646.

    Article  PubMed  Google Scholar 

  • Vincent, I. M., & Barrett, M. P. (2015). Metabolomic-based strategies for anti-parasite drug discovery. Journal of Biomolecular Screening, 20(1), 44–55.

    Article  PubMed  Google Scholar 

  • Vincent, I. M., Weidt, S., Rivas, L., Burgess, K., Smith, T. K., & Ouellette, M. (2014). Untargeted metabolomic analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid metabolism. International Journal for Parasitology, 4(1), 20–27.

    PubMed  Google Scholar 

  • Von Stebut, E. (2015). Leishmaniasis. Journal of the German Society of Dermatology, 13(3), 191–201.

    Google Scholar 

  • Watson, D. G. (2010). The potential of mass spectrometry for the global profiling of parasite metabolomes. Parasitology, 137(9), 1409–1423.

    Article  CAS  PubMed  Google Scholar 

  • WHO. (2016). World Health Organization, Leishmaniasis. Accessed February, from http://www.who.int/mediacentre/factsheets/fs375/en/.

  • Zhang, K., & Beverly, S. M. (2010). Phospholipid and sphingolipid metabolism in Leishmania. Molecular and Biochemical Parasitology, 170(2), 55–64.

    Article  CAS  PubMed  Google Scholar 

  • Zufferey, R., & Mamoun, C. B. (2005). The initial step of glycerolipid metabolism in Leishmania major promastigotes involves a single glycerol-3-phosphate acyltransferase enzyme important for the synthesis of triacylglycerol but not essential for virulence. Molecular Microbiology, 56(3), 800–810.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.A.B.C. is thankful to Sao Paulo Research Foundation (FAPESP 2012/04601-6) for a doctoral fellowship. A.G.T., M.J.M.A., and M.F.M.T. acknowledge FAPESP for financial support (Grants 2012/18756-1, 2012/07361-6, 2014/25494-9, and 2015/50075-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Júlia Manso Alves or Marina Franco Maggi Tavares.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding this work.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canuto, G.A.B., Dörr, F., Lago, J.H.G. et al. New insights into the mechanistic action of methyldehydrodieugenol B towards Leishmania (L.) infantum via a multiplatform based untargeted metabolomics approach. Metabolomics 13, 56 (2017). https://doi.org/10.1007/s11306-017-1193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1193-z

Keywords

Navigation