Skip to main content
Log in

Metabolite profiling: development and application of an UHR-QTOF-MS(/MS) method approach for the assessment of metabolic changes in high fat diet fed mice

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The metabolic alterations accompanying the development of insulin resistance and type 2 diabetes mellitus (T2DM) are complex, not coherently understood and only partially represented by conventional clinical tests like the oral glucose tolerance test. Changes in plasma metabolite concentrations preceding insulin resistance or overt T2DM may help understand the etiology of metabolic disorders and they are potential predictive risk markers.

Objectives

Here, we describe a non-targeted metabolomics platform based on UPLC-UHR-QToF-MS(/MS) for the assessment of plasma non-polar metabolites.

Methods

This method was applied to a longitudinal mouse obesity study comparing mice on control and high fat diet (HFD), respectively. Plasma metabolites were assessed 2, 4, 8 and 16 weeks after initiation of feeding. Multivariate analysis of the metabolite dataset showed clear differentiation of the feeding groups after 8 weeks when the HFD-fed mice exhibited clear signs of insulin resistance.

Results

The discrimination of the groups was due to changes in various metabolic pathways including, among others, glycerophospholipid, sphingolipid and cholesterol metabolism.

Conclusion

From 81 compounds with a p-value lower than 0.05, a total of 19 metabolites could be putatively identified due to their accurate mass, isotope and fragmentation pattern. Thirteen of these observed metabolites are known key metabolites to diabetes or its secondary diseases like diabetic nephropathy and neuropathy (Meiss, Werner, John, Scheja, Herbach, Heeren, Fischer 2015). The compounds putatively identified here may provide valuable starting points for further investigations and developments of clinical diagnostics and prediagnostics for T2DM and related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amrutkar, M., et al. (2015). Genetic disruption of protein kinase stk25 ameliorates metabolic defects in a diet-induced type 2 diabetes model. Diabetes, 64, 2791–2804. doi:10.2337/db15-0060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An, Y., et al. (2013). High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. Journal of Proteome Research, 12, 3755–3768. doi:10.1021/pr400398b.

    Article  CAS  PubMed  Google Scholar 

  • Bartelt, A., et al. (2013). Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning. Biochimica et biophysica acta, 1831, 934–942. doi:10.1016/j.bbalip.2012.11.011.

    Article  CAS  PubMed  Google Scholar 

  • Cao, H., Gerhold, K., Mayers, J. R., Wiest, M. M., Watkins, S. M., & Hotamisligil, G. S. (2008). Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell, 134, 933–944. doi:10.1016/j.cell.2008.07.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta, T., et al. (2012). Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes. Diabetes, 61, 1004–1016. doi:10.2337/db11-0874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisinger, K., Liebisch, G., Schmitz, G., Aslanidis, C., Krautbauer, S., & Buechler, C. (2014). Lipidomic analysis of serum from high fat diet induced obese mice. International Journal of Molecular Sciences, 15, 2991–3002. doi:10.3390/ijms15022991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Godzien, J., et al. (2011). Metabolomic approach with LC-QTOF to study the effect of a nutraceutical treatment on urine of diabetic rats. Journal of Proteome Research, 10, 837–844. doi:10.1021/pr100993x.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., et al. (2012). Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS One, 7, e39286. doi:10.1371/journal.pone.0039286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, C. Y., et al. (2011). The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 Diabetes. Clinical Endocrinology (Oxf). doi:10.1111/j.1365-2265.2011.04244.x.

    Google Scholar 

  • Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444, 860–867. doi:10.1038/nature05485.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Q., et al. (2011). Method for liver tissue metabolic profiling study and its application in type 2 diabetic rats based on ultra performance liquid chromatography-mass spectrometry. Journal of Chromatography B, 879, 961–967. doi:10.1016/j.jchromb.2011.03.009.

    Article  CAS  Google Scholar 

  • IDF (2015). IDF Diabetes Atlas. 7th Edition.

  • Kim, H. J., et al. (2011). Metabolomic analysis of livers and serum from high-fat diet induced obese mice. Journal of Proteome Research, 10, 722–731.

    Article  CAS  PubMed  Google Scholar 

  • Kleemann, R., et al. (2010). Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One, 5, e8817. doi:10.1371/journal.pone.0008817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laguzzi, F., et al. (2016). Cross-sectional relationships between dietary fat intake and serum cholesterol fatty acids in a Swedish cohort of 60-year-old men and women. Journal of human nutrition and dietetics, 29, 325–337. doi:10.1111/jhn.12336.

    Article  CAS  PubMed  Google Scholar 

  • Lappas, M., et al. (2015). The prediction of type 2 diabetes in women with previous gestational diabetes mellitus using lipidomics. Diabetologia, 58, 1436–1442. doi:10.1007/s00125-015-3587-7.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Li, J. J., Wen, X. D., Pan, R., He, Y. S., & Yang, J. (2014). Metabonomic analysis of the therapeutic effect of Potentilla discolor in the treatment of type 2 diabetes mellitus. Molecular BioSystems, 10, 2898–2906. doi:10.1039/c4mb00278d.

    Article  CAS  PubMed  Google Scholar 

  • Loftus, N., Miseki, M., Iida, J., Gika, H. G., Theodoridis, T., & Wilson, I. D. (2008). Profiling and biomarker identification in plasma from different Zucker rat strains via high mass accuracy multistage mass spectrometric analysis using liquid chromatography/mass spectrometry with a quadrupole ion trap-time of flight mass spectrometer. Rapid Communications in Mass Spectrometry, 22, 2547–2554.

    Article  CAS  PubMed  Google Scholar 

  • Meiss, E., et al. (2016). Metabolite targeting: Development of a comprehensive targeted metabolomics platform for the assessment of diabetes and its complications. Metabolomics, 12, 52. doi:10.1007/s11306-016-0958-0.

    Article  Google Scholar 

  • Oresic, M., et al. (2008). Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. The Journal of Experimental Medicine, 205, 2975–2984. doi:10.1084/jem.20081800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallares-Mendez, R., Aguilar-Salinas, C. A., Cruz-Bautista, I., & Del Bosque-Plata, L. (2016). Metabolomics in diabetes, a review. Annals of Medicine, 48, 89–102. doi:10.3109/07853890.2015.1137630.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, T. J., et al. (2015). Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome. The Journal of Physiology, 593, 3181–3197. doi:10.1113/JP270429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Psychogios, N., et al. (2011). The human serum metabolome. PLoS One, 6, doi:10.1371/journal.pone.0016957.

  • Renner, S., et al. (2012). Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced beta-cell mass. Diabetes, 61, 2166–2175. doi:10.2337/db11-1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee, E. P., et al. (2011). Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. Journal of Clinical Investigation. doi:10.1172/JCI44442.

    Google Scholar 

  • Rubio-Aliaga, I., et al. (2011). Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention. Physiological Genomics, 43, 408–416.

    Article  CAS  PubMed  Google Scholar 

  • Scheja, L., et al. (2008). Liver TAG transiently decreases while PL n-3 and n-6 fatty acids are persistently elevated in insulin resistant mice. Lipids, 43, 1039–1051. doi:10.1007/s11745-008-3220-3.

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer, K., Fahy, E., Subramaniam, S., & Dennis, E. A. (2007). The lipid maps initiative in lipidomics. Methods in Enzymology, 432, 171–183.

    Article  CAS  PubMed  Google Scholar 

  • Stahlman, M., et al. (2013). Dyslipidemia, but not hyperglycemia and insulin resistance, is associated with marked alterations in the HDL lipidome in type 2 diabetic subjects in the DIWA cohort: Impact on small HDL particles. Biochimica et Biophysica acta, 1831, 1609–1617. doi:10.1016/j.bbalip.2013.07.009.

    Article  PubMed  Google Scholar 

  • Tchernof, A., & Despres, J. P. (2013). Pathophysiology of human visceral obesity: An update. Physiological Reviews, 93, 359–404. doi:10.1152/physrev.00033.2011.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui, H., et al. (2011). Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Clinica Chimica Acta, 412, 861–872. doi:10.1016/j.cca.2010.12.023.

    Article  CAS  Google Scholar 

  • Ugarte, M., M. Brown, K. A. Hollywood, G. J. Cooper, P. N. Bishop, W. B. Dunn (2012). Metabolomic analysis of rat serum in streptozotocin-induced diabetes and after treatment with oral triethylenetetramine (TETA). Genome Medicine, 4, 35. doi:10.1186/gm334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl, S., et al. (2012). Childhood obesity is associated with changes in the serum metabolite profile. Obesity Facts, 5, 660–670. doi:10.1159/000343204.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., et al. (2004). Discrimination of type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. Journal of Chromatography B, 813, 53–58.

    Article  CAS  Google Scholar 

  • Zhao, X., et al. (2010). Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics, 6, 362–374. doi:10.1007/s11306-010-0203-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., et al. (2013). Effect of metformin on the urinary metabolites of diet-induced-obese mice studied by ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF/MS). Journal of chromatography, 925, 110–116. doi:10.1016/j.jchromb.2013.02.040.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Fischer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Philipp Werner and Ernst Meiss contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 457 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, P., Meiss, E., Scheja, L. et al. Metabolite profiling: development and application of an UHR-QTOF-MS(/MS) method approach for the assessment of metabolic changes in high fat diet fed mice. Metabolomics 13, 44 (2017). https://doi.org/10.1007/s11306-017-1181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1181-3

Keywords

Navigation