Abstract
Introduction
To perform large scale metabolomic analyses, high throughput approaches are required. The direct introduction mass spectrometry (DIMS) approach appears to be very attractive to achieve this goal. However, processing DIMS data is still very challenging due to the large number of samples and the intrinsic complexity of the mass spectra.
Objectives
The objective of this study is to develop a computational procedure, based on an innovative chemometric method, i.e. Independent component–discriminant analysis (IC–DA), for processing DIMS data.
Method
Metabolomic fingerprints were obtained by direct introduction high resolution mass spectrometry (DI-HRMS) analysis of urine samples of subjects that had been professionally exposed to pesticides. Spectral data were processed using the developed IC–DA procedure. Results obtained from this method were compared to those obtained by the conventional Partial least squares–discriminant analysis (PLS–DA). For both the IC–DA and PLS–DA methods, a validation was performed based on a permutation test.
Result
IC–DA results enabled a good detection of discriminant variables and a clear discrimination of control samples and exposure classes whereas a less striking discrimination was obtained with PLS–DA. Putative annotation of these variables was performed using metabolomic databases. Targeted correlation analysis was used for the detection of ions associated with the most discriminant variables, consolidating their identity assignment.
Conclusion
This study demonstrated the efficiency of IC–DA to discriminate the different exposure groups. As well the improvement of high throughput metabolomic studies was provided by combining DI–HRMS with this new chemometric tool.
Similar content being viewed by others
References
Ballabio, D., & Consonni, V. (2013). Classification tools in chemistry. Part 1: Linear models. PLS–DA. Analytical Methods, 5, 3790–3798. doi:10.1039/C3AY40582F.
Belouchrani, A., & Cardoso, J.-F. (1995). Maximum likelihood source separation by the expectation-maximization technique: Deterministic and stochastic implementation. In Proceedings of NOLTA, 95, 49–53.
Bonvallot, N., Tremblay-Franco, M., Chevrier, C., Canlet, C., Warembourg, C., Cravedi, J. P., et al. (2013). Metabolomics tools for describing complex pesticide exposure in pregnant women in Brittany (France). PLoS ONE, 8, e64433. doi:10.1371/journal.pone.0064433.
Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11, 157–192. doi:10.1162/089976699300016863.
Cooper, G., Reed, C., Nguyen, D., Carter, M., & Wang, Y. (2011). Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14015–14020. doi:10.1073/pnas.1105715108.
Cuny, M., Le Gall, G., Colquhoun, I. J., Lees, M., & Rutledge, D. N. (2007). Evolving window zone selection method followed by independent component analysis as useful chemometric tools to discriminate between grapefruit juice, orange juice and blends. Analytica Chimica Acta, 597(2), 203–213. doi:10.1016/j.aca.2007.07.018.
Cuny, M., Vigneau, E., Le Gall, G., Colquhoun, I., Lees, M., & Rutledge, D. N. (2008). Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools. Analytical and Bioanalytical Chemistry, 390(1), 419–427. doi:10.1007/s00216-007-1708-y.
Davidson, R. L., Weber, R. J. M., Liu, H., Sharma-Oates, A., & Viant, M. R. (2016). Galaxy-M: A galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience, 5, 10. doi:10.1186/s13742-016-0115-8.
Dhir, C. S., & Lee, S.-Y. (2009). Discriminant independent component analysis. Ideal, 22, 219–225.
Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in1H NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290. doi:10.1021/ac051632c.
Du, L., Wang, H., Xu, W., Zeng, Y., Hou, Y., Zhang, Y., et al. (2013). Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-term low-level exposure to a mixture of organophosphate pesticides on rat urine profile. Toxicological Sciences, 134, 195–206. doi:10.1093/toxsci/kft091.
Fearn, T. (2000). On orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems, 50, 47–52. doi:10.1016/S0169-7439(99)00045-3.
Ferré, J., & Faber, N. K. M. (2003). Net analyte signal calculation for multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 69, 123–136. doi:10.1016/S0169-7439(03)00118-7.
Geladi, P., & Kowalski, B. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1–17.
Giacomoni, F., Le Corguille, G., Monsoor, M., Landi, M., Pericard, P., Petera, M., et al (2015). Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics (Oxford, England), 31(9), 1493–1495. doi:10.1093/bioinformatics/btu813.
Gustafsson, M. G. (2005). Independent component analysis yields chemically interpretable latent variables in multivariate regression. Journal of Chemical Information and Modeling, 45, 1244–1255.
Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field fourier transform ion cyclotron resonance mass spectrometry. Metabolomics: Official Journal of the Metabolomic Society, 4(2), 128–140. doi:10.1007/s11306-008-0104-8.
Hrydziuszko, O., Silva, M. A., Perera, M. T. P. R., Richards, D. A., Murphy, N., Mirza, D., & Viant, M. R. (2010). Application of metabolomics to investigate the process of human orthotopic liver transplantation: A proof-of-principle study. Omics: A Journal of Integrative Biology, 14(2), 143–150. doi:10.1089/omi.2009.0139.
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430. doi:10.1016/S0893-6080(00)00026-5.
Khanmohammadi, M., Garmarudi, A. B., & de la Guardia, M. (2012). Characterization of petroleum-based products by infrared spectroscopy and chemometrics. Trends in Analytical Chemistry, 35, 135–149.
Kirwan, J. A., Broadhurst, D. I., Davidson, R. L., & Viant, M. R. (2013). Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Analytical and Bioanalytical Chemistry, 405, 5147–5157. doi:10.1007/s00216-013-6856-7.
Kirwan, J. A., Weber, R. J. M., Broadhurst, D. I., & Viant, M. R. (2014). Direct infusion mass spectrometry metabolomics dataset: A benchmark for data processing and quality control. Scientific Data, 1(1), 140012. doi:10.1038/sdata.2014.12.
Kuo, C. H., Wang, K. C., Tian, T. F., Tsai, M. H., Chiung, Y. M., Hsiech, C. M., et al. (2012). Metabolomic characterization of laborers exposed to welding fumes. Chemical Research in Toxicology, 25, 676–686. doi:10.1021/tx200465e.
Lebailly, P., Devaux, A., Pottier, D., De Meo, M., Andre, V., Baldi, I., et al. (2003). Urine mutagenicity and lymphocyte DNA damage in fruit growers occupationally exposed to the fungicide captan. Occupational and Environmental Medicine, 60, 910–917. doi:10.1136/oem.60.12.910.
Lebailly, P., Vigreux, C., Lechevrel, C., Ledemeney, D., Godard, T., Sichel, F., et al. (1998). DNA damage in mononuclear leukocytes of farmers measured using the alkaline comet assay: Modifications of DNA damage levels after a one-day field spraying period with selected pesticides. Cancer Epidemiology Biomarkers and Prevention, 7, 929–940.
Lin, L., Yu, Q., Yan, X., Hang, W., Zheng, J., Xing, J., et al. (2010). Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? a serum metabonomic study of kidney cancer. The Royal Society of Chemistry, 135(11), 2970–2978. doi:10.1039/c0an00265h.
Lucio, M., Fekete, A., Weigert, C., Wägele, B., Zhao, X., Chen, J., et al. (2010). Insulin sensitivity is reflected by characteristic metabolic fingerprints-a fourier transform mass spectrometric non-targeted metabolomics approach. PLoS ONE, 5(10), e13317. doi:10.1371/journal.pone.0013317.
Madalinski, G., Godat, E., Alves, S., Lesage, D., Genin, E., Levi, P., et al. (2008). Direct introduction of biological samples into a LTQ-Orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. Analytical chemistry, 80(9), 3291–3303. doi:10.1021/ac7024915.
Marshall, A. G., Hendrickson, C. L., & Jackson, G. S. (1998). Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass spectrometry reviews, 17, 1–35.
Marshall, A. G., & Verdun, F. R. (1989). Fourier transforms in NMR, optical, and mass spectrometry. A user’s handbook. Amsterdam: Elsevier.
Oikawa, A., Nakamura, Y., Ogura, T., Kimura, A., Suzuki, H., Sakurai, N., et al. (2006). Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiology, 142(2), 398–413. doi:10.1104/pp.106.080317.
Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16(1997), 373–378. doi:10.1016/S0167-7799(98)01214-1.
Osten, D. W. (1988). Selection of optimal regression models via cross-validation. Journal of Chemometrics, 2, 39–48. doi:10.1002/cem.1180020106.
Payne, T. G., Southam, A. D., Arvanitis, T. N., & Viant, M. R. (2009). A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. Journal of the American Society for Mass Spectrometry, 20(6), 1087–1095. doi:10.1016/j.jasms.2009.02.001.
Rutledge, D. N., & Jouan-Rimbaud Bouveresse, D. (2013). Independent components analysis with the JADE algorithm. Trends in Analytical Chemistry, 50, 22–32. doi:10.1016/j.trac.2013.03.013.
Rutledge, D. N., & Jouan-Rimbaud Bouveresse, D. (2015). Corrigendum to “independent components analysis with the JADE algorithm.” Trends in Analytical Chemistry, 67, 220. doi:10.1016/j.trac.2015.02.001.
Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J. (2004). Metabolite fingerprinting: Detecting biological features by independent component analysis. Bioinformatics (Oxford, England), 20(15), 2447–2454. doi:10.1093/bioinformatics/bth270.
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.
Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504. doi:10.1186/1471-2105-9-504.
Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128. doi:10.1002/cem.695.
Van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7(142), 1–15. doi:10.1186/1471-2164-7-142.
Van Eeckhaut, A., Lanckmans, K., Sarre, S., Smolders, I., & Michotte, Y. (2009). Validation of bioanalytical LC–MS/MS assays: Evaluation of matrix effects. Journal of Chromatography B, 877(23), 2198–2207. doi:10.1016/j.jchromb.2009.01.003.
Villas-Bôas, S. G., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24(5), 613–646. doi:10.1002/mas.20032.
Wang, G., Ding, Q., & Hou, Z. (2008). Independent component analysis and its applications in signal processing for analytical chemistry. Trends in Analytical Chemistry, 27(4), 368–376. doi:10.1016/j.trac.2008.01.009.
Weber, R. J. M., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and Orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83, 3737–3743. doi:10.1021/ac2001803.
Westad, F. (2005). Independent component analysis and regression applied on sensory data. Journal of Chemometrics, 19, 171–179. doi:10.1002/cem.920.
Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122. doi:10.1021/ac0713510.
Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52. doi:10.1016/0169-7439(87)80084-9.
Yang, J., Sun, X., Feng, Z., Hao, D., Wang, M., Zhao, X., et al. (2011). Metabolomic analysis of the toxic effects of chronic exposure to low-level dichlorvos on rats using ultra-performance liquid chromatography-mass spectrometry. Toxicology Letters, 206, 306–313. doi:10.1016/j.toxlet.2011.08.012.
Acknowledgements
Authors gratefully acknowledge the funding received towards Baninia Habchi PhD from the Region Ile-de-France and Dim Analytics.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no conflict of interest.
Ethical approval
All procedures performed in this work were in accordance with the ethical standards of the national research committee and with the 1964 Helsinki declaration and its later amendments.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Habchi, B., Alves, S., Jouan-Rimbaud Bouveresse, D. et al. An innovative chemometric method for processing direct introduction high resolution mass spectrometry metabolomic data: independent component–discriminant analysis (IC–DA). Metabolomics 13, 45 (2017). https://doi.org/10.1007/s11306-017-1179-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11306-017-1179-x