Skip to main content
Log in

An innovative chemometric method for processing direct introduction high resolution mass spectrometry metabolomic data: independent component–discriminant analysis (IC–DA)

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Introduction

To perform large scale metabolomic analyses, high throughput approaches are required. The direct introduction mass spectrometry (DIMS) approach appears to be very attractive to achieve this goal. However, processing DIMS data is still very challenging due to the large number of samples and the intrinsic complexity of the mass spectra.

Objectives

The objective of this study is to develop a computational procedure, based on an innovative chemometric method, i.e. Independent component–discriminant analysis (IC–DA), for processing DIMS data.

Method

Metabolomic fingerprints were obtained by direct introduction high resolution mass spectrometry (DI-HRMS) analysis of urine samples of subjects that had been professionally exposed to pesticides. Spectral data were processed using the developed IC–DA procedure. Results obtained from this method were compared to those obtained by the conventional Partial least squares–discriminant analysis (PLS–DA). For both the IC–DA and PLS–DA methods, a validation was performed based on a permutation test.

Result

IC–DA results enabled a good detection of discriminant variables and a clear discrimination of control samples and exposure classes whereas a less striking discrimination was obtained with PLS–DA. Putative annotation of these variables was performed using metabolomic databases. Targeted correlation analysis was used for the detection of ions associated with the most discriminant variables, consolidating their identity assignment.

Conclusion

This study demonstrated the efficiency of IC–DA to discriminate the different exposure groups. As well the improvement of high throughput metabolomic studies was provided by combining DI–HRMS with this new chemometric tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ballabio, D., & Consonni, V. (2013). Classification tools in chemistry. Part 1: Linear models. PLS–DA. Analytical Methods, 5, 3790–3798. doi:10.1039/C3AY40582F.

    Article  CAS  Google Scholar 

  • Belouchrani, A., & Cardoso, J.-F. (1995). Maximum likelihood source separation by the expectation-maximization technique: Deterministic and stochastic implementation. In Proceedings of NOLTA, 95, 49–53.

    Google Scholar 

  • Bonvallot, N., Tremblay-Franco, M., Chevrier, C., Canlet, C., Warembourg, C., Cravedi, J. P., et al. (2013). Metabolomics tools for describing complex pesticide exposure in pregnant women in Brittany (France). PLoS ONE, 8, e64433. doi:10.1371/journal.pone.0064433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11, 157–192. doi:10.1162/089976699300016863.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, G., Reed, C., Nguyen, D., Carter, M., & Wang, Y. (2011). Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14015–14020. doi:10.1073/pnas.1105715108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuny, M., Le Gall, G., Colquhoun, I. J., Lees, M., & Rutledge, D. N. (2007). Evolving window zone selection method followed by independent component analysis as useful chemometric tools to discriminate between grapefruit juice, orange juice and blends. Analytica Chimica Acta, 597(2), 203–213. doi:10.1016/j.aca.2007.07.018.

    Article  CAS  PubMed  Google Scholar 

  • Cuny, M., Vigneau, E., Le Gall, G., Colquhoun, I., Lees, M., & Rutledge, D. N. (2008). Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools. Analytical and Bioanalytical Chemistry, 390(1), 419–427. doi:10.1007/s00216-007-1708-y.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, R. L., Weber, R. J. M., Liu, H., Sharma-Oates, A., & Viant, M. R. (2016). Galaxy-M: A galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience, 5, 10. doi:10.1186/s13742-016-0115-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhir, C. S., & Lee, S.-Y. (2009). Discriminant independent component analysis. Ideal, 22, 219–225.

    Google Scholar 

  • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in1H NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290. doi:10.1021/ac051632c.

    Article  CAS  PubMed  Google Scholar 

  • Du, L., Wang, H., Xu, W., Zeng, Y., Hou, Y., Zhang, Y., et al. (2013). Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-term low-level exposure to a mixture of organophosphate pesticides on rat urine profile. Toxicological Sciences, 134, 195–206. doi:10.1093/toxsci/kft091.

    Article  CAS  PubMed  Google Scholar 

  • Fearn, T. (2000). On orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems, 50, 47–52. doi:10.1016/S0169-7439(99)00045-3.

    Article  CAS  Google Scholar 

  • Ferré, J., & Faber, N. K. M. (2003). Net analyte signal calculation for multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 69, 123–136. doi:10.1016/S0169-7439(03)00118-7.

    Article  Google Scholar 

  • Geladi, P., & Kowalski, B. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  CAS  Google Scholar 

  • Giacomoni, F., Le Corguille, G., Monsoor, M., Landi, M., Pericard, P., Petera, M., et al (2015). Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics (Oxford, England), 31(9), 1493–1495. doi:10.1093/bioinformatics/btu813.

    Article  CAS  Google Scholar 

  • Gustafsson, M. G. (2005). Independent component analysis yields chemically interpretable latent variables in multivariate regression. Journal of Chemical Information and Modeling, 45, 1244–1255.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field fourier transform ion cyclotron resonance mass spectrometry. Metabolomics: Official Journal of the Metabolomic Society, 4(2), 128–140. doi:10.1007/s11306-008-0104-8.

    Article  CAS  Google Scholar 

  • Hrydziuszko, O., Silva, M. A., Perera, M. T. P. R., Richards, D. A., Murphy, N., Mirza, D., & Viant, M. R. (2010). Application of metabolomics to investigate the process of human orthotopic liver transplantation: A proof-of-principle study. Omics: A Journal of Integrative Biology, 14(2), 143–150. doi:10.1089/omi.2009.0139.

    Article  CAS  PubMed  Google Scholar 

  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430. doi:10.1016/S0893-6080(00)00026-5.

    Article  PubMed  Google Scholar 

  • Khanmohammadi, M., Garmarudi, A. B., & de la Guardia, M. (2012). Characterization of petroleum-based products by infrared spectroscopy and chemometrics. Trends in Analytical Chemistry, 35, 135–149.

    Article  CAS  Google Scholar 

  • Kirwan, J. A., Broadhurst, D. I., Davidson, R. L., & Viant, M. R. (2013). Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Analytical and Bioanalytical Chemistry, 405, 5147–5157. doi:10.1007/s00216-013-6856-7.

    Article  CAS  PubMed  Google Scholar 

  • Kirwan, J. A., Weber, R. J. M., Broadhurst, D. I., & Viant, M. R. (2014). Direct infusion mass spectrometry metabolomics dataset: A benchmark for data processing and quality control. Scientific Data, 1(1), 140012. doi:10.1038/sdata.2014.12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo, C. H., Wang, K. C., Tian, T. F., Tsai, M. H., Chiung, Y. M., Hsiech, C. M., et al. (2012). Metabolomic characterization of laborers exposed to welding fumes. Chemical Research in Toxicology, 25, 676–686. doi:10.1021/tx200465e.

    Article  PubMed  Google Scholar 

  • Lebailly, P., Devaux, A., Pottier, D., De Meo, M., Andre, V., Baldi, I., et al. (2003). Urine mutagenicity and lymphocyte DNA damage in fruit growers occupationally exposed to the fungicide captan. Occupational and Environmental Medicine, 60, 910–917. doi:10.1136/oem.60.12.910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebailly, P., Vigreux, C., Lechevrel, C., Ledemeney, D., Godard, T., Sichel, F., et al. (1998). DNA damage in mononuclear leukocytes of farmers measured using the alkaline comet assay: Modifications of DNA damage levels after a one-day field spraying period with selected pesticides. Cancer Epidemiology Biomarkers and Prevention, 7, 929–940.

    CAS  Google Scholar 

  • Lin, L., Yu, Q., Yan, X., Hang, W., Zheng, J., Xing, J., et al. (2010). Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? a serum metabonomic study of kidney cancer. The Royal Society of Chemistry, 135(11), 2970–2978. doi:10.1039/c0an00265h.

    CAS  Google Scholar 

  • Lucio, M., Fekete, A., Weigert, C., Wägele, B., Zhao, X., Chen, J., et al. (2010). Insulin sensitivity is reflected by characteristic metabolic fingerprints-a fourier transform mass spectrometric non-targeted metabolomics approach. PLoS ONE, 5(10), e13317. doi:10.1371/journal.pone.0013317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madalinski, G., Godat, E., Alves, S., Lesage, D., Genin, E., Levi, P., et al. (2008). Direct introduction of biological samples into a LTQ-Orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. Analytical chemistry, 80(9), 3291–3303. doi:10.1021/ac7024915.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, A. G., Hendrickson, C. L., & Jackson, G. S. (1998). Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass spectrometry reviews, 17, 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, A. G., & Verdun, F. R. (1989). Fourier transforms in NMR, optical, and mass spectrometry. A user’s handbook. Amsterdam: Elsevier.

    Google Scholar 

  • Oikawa, A., Nakamura, Y., Ogura, T., Kimura, A., Suzuki, H., Sakurai, N., et al. (2006). Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiology, 142(2), 398–413. doi:10.1104/pp.106.080317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16(1997), 373–378. doi:10.1016/S0167-7799(98)01214-1.

    Article  CAS  PubMed  Google Scholar 

  • Osten, D. W. (1988). Selection of optimal regression models via cross-validation. Journal of Chemometrics, 2, 39–48. doi:10.1002/cem.1180020106.

    Article  Google Scholar 

  • Payne, T. G., Southam, A. D., Arvanitis, T. N., & Viant, M. R. (2009). A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. Journal of the American Society for Mass Spectrometry, 20(6), 1087–1095. doi:10.1016/j.jasms.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  • Rutledge, D. N., & Jouan-Rimbaud Bouveresse, D. (2013). Independent components analysis with the JADE algorithm. Trends in Analytical Chemistry, 50, 22–32. doi:10.1016/j.trac.2013.03.013.

    Article  CAS  Google Scholar 

  • Rutledge, D. N., & Jouan-Rimbaud Bouveresse, D. (2015). Corrigendum to “independent components analysis with the JADE algorithm.” Trends in Analytical Chemistry, 67, 220. doi:10.1016/j.trac.2015.02.001.

    Article  CAS  Google Scholar 

  • Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J. (2004). Metabolite fingerprinting: Detecting biological features by independent component analysis. Bioinformatics (Oxford, England), 20(15), 2447–2454. doi:10.1093/bioinformatics/bth270.

    Article  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504. doi:10.1186/1471-2105-9-504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128. doi:10.1002/cem.695.

    Article  CAS  Google Scholar 

  • Van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7(142), 1–15. doi:10.1186/1471-2164-7-142.

    Google Scholar 

  • Van Eeckhaut, A., Lanckmans, K., Sarre, S., Smolders, I., & Michotte, Y. (2009). Validation of bioanalytical LC–MS/MS assays: Evaluation of matrix effects. Journal of Chromatography B, 877(23), 2198–2207. doi:10.1016/j.jchromb.2009.01.003.

    Article  Google Scholar 

  • Villas-Bôas, S. G., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24(5), 613–646. doi:10.1002/mas.20032.

    Article  PubMed  Google Scholar 

  • Wang, G., Ding, Q., & Hou, Z. (2008). Independent component analysis and its applications in signal processing for analytical chemistry. Trends in Analytical Chemistry, 27(4), 368–376. doi:10.1016/j.trac.2008.01.009.

    Article  CAS  Google Scholar 

  • Weber, R. J. M., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and Orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83, 3737–3743. doi:10.1021/ac2001803.

    Article  CAS  PubMed  Google Scholar 

  • Westad, F. (2005). Independent component analysis and regression applied on sensory data. Journal of Chemometrics, 19, 171–179. doi:10.1002/cem.920.

    Article  CAS  Google Scholar 

  • Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122. doi:10.1021/ac0713510.

    Article  CAS  PubMed  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52. doi:10.1016/0169-7439(87)80084-9.

    Article  CAS  Google Scholar 

  • Yang, J., Sun, X., Feng, Z., Hao, D., Wang, M., Zhao, X., et al. (2011). Metabolomic analysis of the toxic effects of chronic exposure to low-level dichlorvos on rats using ultra-performance liquid chromatography-mass spectrometry. Toxicology Letters, 206, 306–313. doi:10.1016/j.toxlet.2011.08.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the funding received towards Baninia Habchi PhD from the Region Ile-de-France and Dim Analytics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estelle Rathahao-Paris.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in this work were in accordance with the ethical standards of the national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2668 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habchi, B., Alves, S., Jouan-Rimbaud Bouveresse, D. et al. An innovative chemometric method for processing direct introduction high resolution mass spectrometry metabolomic data: independent component–discriminant analysis (IC–DA). Metabolomics 13, 45 (2017). https://doi.org/10.1007/s11306-017-1179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1179-x

Keywords

Navigation