Advertisement

Metabolomics

, 13:16 | Cite as

Metabolomic analysis of the mechanism of action of yerba mate aqueous extract on Salmonella enterica serovar Typhimurium

  • Caroline S. RempeEmail author
  • Scott C. Lenaghan
  • Kellie P. Burris
  • C. Neal StewartJr.
Original Article

Abstract

Introduction

Salmonella enterica serovar Typhimurium is a Gram-negative enteropathogen that infects millions of people worldwide each year; the emergence of drug-resistant strains has heightened the need for novel treatments. Aqueous extracts of yerba mate (Ilex paraguariensis) effectively inhibit drug-resistant S. Typhimurium in vitro. Some chemical constituents that contribute to the extract’s antibacterial activity have been identified, but the mechanism of action of the extract is still unknown.

Objectives

This study sought to gain insight into the antibacterial mechanism of yerba mate extract against S. Typhimurium.

Methods

Assays for catalase activity and membrane permeability were used to select time points for an LC-MS metabolomics analysis of S. Typhimurium intracellular components.

Results

Yerba mate extract induced changes in central carbon metabolism in S. Typhimurium, reduced catalase activity by means other than direct inhibition, and did not change membrane integrity despite a significant increase in the production of a cell wall precursor. Additional significant differences were observed in the global metabolic regulators alpha-ketoglutarate and acetylphosphate, the energy-related molecule NAD+, and in an unexpected match to the antibacterial compound yohimbine.

Conclusion

This work provides the first evaluation of the mechanism of action of yerba mate extract on S. Typhimurium, revealing a major impact on central carbon metabolism, catalase activity, and possible metabolic links to interference in energy production and membrane integrity. The putative identification of the antibacterial compound yohimbine and the many unidentified compounds provides additional avenues for future investigations of yerba mate compounds capable of traversing or binding to S. Typhimurium’s membrane.

Keywords

Yerba mate Antibacterial Natural product Salmonella enterica serovar Typhimurium Metabolomics 

Notes

Acknowledgements

We are very grateful for the use of Dr. P. Michael Davidson’s BSL-2 laboratory, equipment, and storage space. We would also like to thank the Department of Food Science and Technology for the use of S. Typhimurium DT104 strain 2576, Dr. Hayriye Bozkurt for assistance with BSL-2 lab equipment, Dr. Arnold Saxton for statistics advice, and Dr. Shawn Campagna, Dr. Hector Castro Gonzalez, and Eric Tague for extracting and running samples for metabolomics. This research was supported by the Ivan Racheff Chair of Excellence endowment and the Graduate School of Genome Science and Technology.

Author’s contributions

CSR, SCL, KPB, and CNS conceived and designed the study; CSR conducted the experiments, CSR and SCL analyzed and interpreted the data; CSR, SCL, KPB, and CNS wrote and edited the manuscript. All authors read and approved the final manuscript.

Availability of supporting data

The data set supporting the results of this article is available in the MetaboLights repository, identifier MTBLS359; http://www.ebi.ac.uk/metabolights/MTBLS359.

Compliance with ethical standards

Conflict of interest

The authors (CSR, SCL, KPB, and CNS) declare that they have no competing interests.

Research involving human participants and/or animals

No human participants or animals were involved in this study.

Informed consent

No human participants were involved in this study.

Supplementary material

11306_2016_1159_MOESM1_ESM.png (181 kb)
Supplementary material 1 (PNG 180 KB)
11306_2016_1159_MOESM2_ESM.png (1.9 mb)
Supplementary material 2 (PNG 1928 KB)
11306_2016_1159_MOESM3_ESM.png (1023 kb)
Supplementary material 3 (PNG 1023 KB)
11306_2016_1159_MOESM4_ESM.png (3.7 mb)
Supplementary material 4 (PNG 3779 KB)
11306_2016_1159_MOESM5_ESM.png (368 kb)
Supplementary material 5 (PNG 367 KB)
11306_2016_1159_MOESM6_ESM.docx (59 kb)
Supplementary material 6 (DOCX 59 KB)
11306_2016_1159_MOESM7_ESM.xls (3.3 mb)
Supplementary material 7 (XLS 3350 KB)
11306_2016_1159_MOESM8_ESM.xls (82 kb)
Supplementary material 7 (XLS 82 KB)

References

  1. Abreu, A. C., McBain, A. J., & Simões, M. (2012). Plants as sources of new antimicrobials and resistance-modifying agents. Natural Product Reports, 29, 1007–1021.CrossRefPubMedGoogle Scholar
  2. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and Chemical Toxicology, 46, 446–475.CrossRefPubMedGoogle Scholar
  3. Barb, A. W., & Zhou, P. (2008). Mechanism and inhibition of LpxC: An essential zinc-dependent deacetylase of bacterial lipid A synthesis. Current Pharmaceutical Biotechnology, 9, 9–15.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Belenky, P., Ye, J. D., Porter, C. B. M., Schwarz, E. G., Walker, G. C., & Collins, J. J. (2015). Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Reports, 13, 968–980.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19, 256–265.CrossRefPubMedGoogle Scholar
  6. Borges, A., Saavedra, M. J., & Simões, M. (2015). Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Current Medicinal Chemistry, 22, 2590–2614.CrossRefPubMedGoogle Scholar
  7. Burris, K. P., Davidson, P. M., Stewart, C. N., & Harte, F. M. (2011). Antimicrobial activity of yerba mate (Ilex paraguariensis) aqueous extracts against Escherichia coli O157:H7 and Staphylococcus aureus. Journal of Food Science, 76, M456–M462.CrossRefPubMedGoogle Scholar
  8. Burris, K. P., Davidson, P. M., Stewart, C. N., Zivanovic, S., & Harte, F. M. (2012). Aqueous extracts of yerba mate (Ilex paraguariensis) as a natural antimicrobial against Escherichia coli O157:H7 in a microbiological medium and pH 6.0 apple juice. Journal of Food Protection, 75, 753–757.CrossRefPubMedGoogle Scholar
  9. Burris, K. P., Higginbotham, K. L., & Stewart, C. N. (2015). Aqueous extracts of yerba mate as bactericidal agents against methicillin-resistant Staphylococcus aureus in a microbiological medium and ground beef mixtures. Food Control, 50, 748–753.CrossRefGoogle Scholar
  10. CDC. (2015). National antimicrobial resistance monitoring system for enteric bacteria (NARMS): Human isolates final report, 2013. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 1–81.Google Scholar
  11. Chambers, M., Maclean, B., & Burke, R. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30, 918–920.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chatterjee, A., Pakrashi, S. C., & Werner, G. (1956). Recent developments in the chemistry and pharmacology of Rauwolfia alkaloids. In L. Zechmeister (Ed.), Progress in the Chemistry of Organic Natural Products (pp. 346–443). Pasadena, CA: Springer.Google Scholar
  13. Chulavatnatol, M., & Atkinson, D. E. (1973). Phosphoenolpyruvate synthetase from Escherichia coli: Effects of adenylate energy charge and modifier concentrations. The Journal of Biological Chemistry, 248, 2712–2715.PubMedGoogle Scholar
  14. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12, 564–582.PubMedPubMedCentralGoogle Scholar
  15. Crim, S., Griffin, P., Tauxe, R., Marder, E., Gilliss, D., Cronquist, A., et al. (2015). Preliminary incidence and trends of infection with pathogens transmitted commonly through food: Foodborne diseases active surveillance network, 10 U.S. sites, 2006–2014. MMWR Morbidity and Mortality Weekly Report, 64, 495–499.PubMedGoogle Scholar
  16. Cushnie, T. P. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38, 99–107.CrossRefPubMedGoogle Scholar
  17. Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi, by disrupting the cellular membrane. Journal of Ethnopharmacology, 130, 107–115.CrossRefPubMedGoogle Scholar
  18. Di Pasqua, R., Betts, G., Hoskins, N., Edwards, M., Ercolini, D., & Mauriello, G. (2007). Membrane toxicity of antimicrobial compounds from essential oils. Journal of Agricultural and Food Chemistry, 55, 4863–4870.CrossRefPubMedGoogle Scholar
  19. Dörries, K., Schlueter, R., & Lalk, M. (2014). Impact of antibiotics with various target sites on the metabolome of. Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 58, 7151–7163.CrossRefPubMedGoogle Scholar
  20. Doucette, C. D., Schwab, D. J., Wingreen, N. S., & Rabinowitz, J. D. (2011). Alpha-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nature Chemical Biology, 7, 894–901.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dwyer, D. J., Collins, J. J., & Walker, G. C. (2015). Unraveling the physiological complexities of antibiotic lethality. Annual Review of Pharmacology and Toxicology, 55, 313–332.CrossRefPubMedGoogle Scholar
  22. Ewins, A. J. (1914). CCLV-the alkaloids of quebracho bark. Journal of the Chemical Society, Transactions, 105, 2738–2748.CrossRefGoogle Scholar
  23. Farr, S. B., & Kogoma, T. (1991). Oxidative stress responses in Escherichia coli and Salmonella Typhimurium. Microbiological Reviews, 55, 561–585.PubMedPubMedCentralGoogle Scholar
  24. Filip, R., Lotito, S. B., Ferraro, G., & Fraga, C. G. (2000). Antioxidant activity of Ilex paraguariensis and related species. Nutrition Research, 20, 1437–1446.CrossRefGoogle Scholar
  25. Frawley, E. R., Crouch, M. V., Bingham-Ramos, L. K., Robbins, H. F., Wang, W., Wright, G. D., & Fang, F. C. (2013). Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella Typhimurium. Proceedings of the National Academy of Sciences, 110, 12054–12059.CrossRefGoogle Scholar
  26. Frossard, S. M., Khan, A. a., Warrick, E. C., Gately, J. M., Hanson, A. D., Oldham, M. L., et al. (2012). Identification of a third osmoprotectant transport system, the osmU system, in Salmonella enterica. Journal of Bacteriology, 194, 3861–3871.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gill, A. O., & Holley, R. A. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology, 108, 1–9.CrossRefPubMedGoogle Scholar
  28. Gonzalez-gil, F., Diaz-sanchez, S., Pendleton, S., Andino, A., Zhang, N., Yard, C., et al. (2014). Yerba mate enhances probiotic bacteria growth in vitro but as a feed additive does not reduce Salmonella Enteritidis colonization in vivo. Poultry Science, 93, 434–440.CrossRefPubMedGoogle Scholar
  29. Heck, C. I., & De Mejia, E. G. (2007). Yerba mate tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. Journal of Food Science, 72, 138–151.CrossRefGoogle Scholar
  30. Helander, I. M., Alakomi, H.-L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., et al. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46, 3590–3595.CrossRefGoogle Scholar
  31. Hongpattarakere, T. (2000). Natural antimicrobial components isolated from yerba mate (Ilex paraguariensis) leaves. Dissertation, Madison, WI: University of Wisconsin.Google Scholar
  32. Hwang, D., & Lim, Y.-H. (2015). Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Scientific Reports, 5, 1–10.CrossRefGoogle Scholar
  33. Iwase, T., Tajima, A., Sugimoto, S., Okuda, K., Hironaka, I., Kamata, Y., et al. (2013). A simple assay for measuring catalase activity: A visual approach. Scientific Reports, 3, 1–4.CrossRefGoogle Scholar
  34. Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J., Cuadros-Inostroza, A., Steinhauser, D., et al. (2010). Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology, 6, 1–16.CrossRefGoogle Scholar
  35. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130, 797–810.CrossRefPubMedGoogle Scholar
  37. Kubo, I., & Muroi, H. (1993). Antibacterial activity of long-chain alcohols against Streptococcus mutans. Journal of Agricultural and Food Chemistry, 41, 2447–2450.CrossRefGoogle Scholar
  38. Lambert, R. J. W., Skandamis, P. N., Coote, P. J., & Nychas, G. J. E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91, 453–462.CrossRefPubMedGoogle Scholar
  39. Lewis, K., & Ausubel, F. M. (2006). Prospects for plant-derived antibacterials. Nature Biotechnology, 24, 1504–1507.CrossRefPubMedGoogle Scholar
  40. Lou, Z., Wang, H., Rao, S., Sun, J., Ma, C., & Li, J. (2012). p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 25, 550–554.CrossRefGoogle Scholar
  41. Lu, W., Clasquin, M. F., Melamud, E., Amador-Noguez, D., Amy, A., & Rabinowitz, J. D. (2010). Metabolome analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Analytical Chemistry, 82, 3212–3221.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Martin, J. G. P., Porto, E., De Alencar, S. M., Glória, E. M., Corrêa, C. B., & Cabral, I. S. R. (2013). Antimicrobial activity of yerba mate (Ilex Paraguariensis St. Hil.) against food pathogens. Revista Argentina de Microbiologia, 45, 93–98.CrossRefGoogle Scholar
  43. Mcclerren, A. L., Endsley, S., Bowman, J. L., Andersen, N. H., Rudolph, J., & Raetz, C. R. H. (2005). A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry, 44, 16574–16583.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Melamud, E., Vastag, L., & Rabinowitz, J. D. (2010). Metabolomic analysis and visualization engine for LC-MS data. Analytical Chemistry, 82, 9818–9826.CrossRefPubMedGoogle Scholar
  45. Morishige, Y., Fujimori, K., & Amano, F. (2013). Differential resuscitative effect of pyruvate and its analogues on VBNC (viable but non-culturable) Salmonella. Microbes and Environments, 28, 180–186.CrossRefPubMedGoogle Scholar
  46. Mousavi, F., Bojko, B., Bessonneau, V., & Pawliszyn, J. (2016). Cinnamaldehyde characterization as an antibacterial agent towards E. coli metabolic profile using 96-blade solid phase microextraction coupled to liquid chromatography-mass spectrometry. Journal of Proteome Research, 15, 963–975.CrossRefPubMedGoogle Scholar
  47. Nakamura, K., Ishiyama, K., Sheng, H., Ikai, H., Kanno, T., & Niwano, Y. (2015). Bactericidal activity and mechanism of photo-irradiated polyphenols against Gram-positive and -negative bacteria. Journal of Agricultural and Food Chemistry, 63, 7707–7713.CrossRefPubMedGoogle Scholar
  48. Nohynek, L. J., Alakomi, H., Kähkönen, M. P., Heinonen, M., Ilkka, M., Puupponen-pimiä, R. H., & Helander, I. M. (2006). Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer, 54, 18–32.CrossRefPubMedGoogle Scholar
  49. Ozçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 49, 396–402.CrossRefPubMedGoogle Scholar
  50. Pereira, D. S., Donald, L. J., Hosfields, D. J., & Harry, W. (1994). Active site mutants of Escherichia coli citrate synthase. The Journal of Biological Chemistry, 269, 412–417.PubMedGoogle Scholar
  51. Plaper, A., Golob, M., Hafner, I., Oblak, M., Šolmajer, T., & Jerala, R. (2003). Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications, 306, 530–536.CrossRefPubMedGoogle Scholar
  52. Pompella, A., Visvikis, A., Paolicchi, A., De Tata, V., & Casini, A. F. (2003). The changing faces of glutathione, a cellular protagonist. Biochemical Pharmacology, 66, 1499–1503.CrossRefPubMedGoogle Scholar
  53. Puupponen-Pimiä, R., Nohynek, L., Alakomi, H.-L., & Oksman-Caldentey, K.-M. (2005). Bioactive berry compounds: Novel tools against human pathogens. Applied Microbiology and Biotechnology, 67, 8–18.CrossRefPubMedGoogle Scholar
  54. Radulović, N. S., Blagojević, P. D., Stojanović-Radić, Z. Z., & Stojanović, N. M. (2013). Antimicrobial plant metabolites: structural diversity and mechanism of action. Current Medicinal Chemistry, 20, 932–952.PubMedGoogle Scholar
  55. Rempe, C. S., Burris, K. P., Woo, H. L., Goodrich, B., Gosnell, D. K., Tschaplinski, T. J., & Stewart, C. N. (2015). Computational ranking of yerba mate small molecules based on their predicted contribution to antibacterial activity against methicillin-resistant Staphylococcus aureus. Plos One, 10, 1–18.CrossRefGoogle Scholar
  56. Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., et al. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of Bacteriology, 194, 686–701.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States: Major pathogens. Emerging Infectious Diseases, 17, 7–15.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Silins, G., Tan, J., & Chan, K. (2015). Intellectual property and patent issues with phytotherapy products. In I. Ramzan (Ed.), Phytotherapies: efficacy, safety, and regulation (pp. 573–593). Hoboken: Wiley.CrossRefGoogle Scholar
  59. Tegos, G., & Stermitz, F. (2002). Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrobial Agents and Chemotherapy, 46, 3133–3141.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tsai, T.-H., Tsai, T.-H., Chien, Y.-C., Lee, C.-W., & Tsai, P.-J. (2008). In vitro antimicrobial activities against cariogenic streptococci and their antioxidant capacities: A comparative study of green tea versus different herbs. Food Chemistry, 110, 859–864.CrossRefPubMedGoogle Scholar
  61. Tyagi, P., Singh, M., Kumari, H., Kumari, A., & Mukhopadhyay, K. (2015). Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. Plos One, 10, 1–15.Google Scholar
  62. Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., & Venkitanarayanan, K. (2014). Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. BioMed Research International, 2014, 1–18.Google Scholar
  63. Valerga, J., Reta, M., & Lanari, M. C. (2012). Polyphenol input to the antioxidant activity of yerba mate (Ilex paraguariensis) extracts. LWT - Food Science and Technology, 45, 28–35.CrossRefGoogle Scholar
  64. Valerga, J., Shorthose, R., & Lanari, M. C. (2013). Antioxidant activity of yerba mate extracts: Interactions between the individual polyphenols. European Journal of Lipid Science and Technology, 115, 513–525.CrossRefGoogle Scholar
  65. Vincent, I. M., Ehmann, D. E., Mills, S., Perros, M., & Barrett, M. P. (2016). Untargeted metabolomics to ascertain antibiotic modes of action. Antimicrobial Agents and Chemotherapy, 60, 2281–2291.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wolfe, A. J. (2005). The acetate switch. Microbiology and Molecular Biology Reviews, 69, 12–50.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wu, J., Li, Y., Cai, Z., & Jin, Y. (2014). Pyruvate-associated acid resistance in bacteria. Applied and Environmental Microbiology, 80, 4108–4113.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wu, T., He, M., Zang, X., Zhou, Y., Qiu, T., Pan, S., & Xu, X. (2013). A structure–activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochimica et Biophysica Acta, 1828, 2751–2756.CrossRefPubMedGoogle Scholar
  69. Yau, W.-P., Goh, C. H., & Koh, H.-L. (2015). Quality control and quality assurance of phytomedicines: Key considerations, methods, and analytical challenges. In I. Ramzan (Ed.), Phytotherapies: efficacy, safety, and regulation (pp. 18–48). Hoboken: Wiley.CrossRefGoogle Scholar
  70. Yong, A. L., Ooh, K. F., Ong, H. C., Chai, T. T., & Wong, F. C. (2015). Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts. Food Chemistry, 186, 32–36.CrossRefPubMedGoogle Scholar
  71. Zhao, X., Hong, Y., & Drlica, K. (2015). Moving forward with reactive oxygen species involvement in antimicrobial lethality. The Journal of Antimicrobial Chemotherapy, 70, 639–642.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Caroline S. Rempe
    • 1
    Email author
  • Scott C. Lenaghan
    • 2
    • 3
  • Kellie P. Burris
    • 4
    • 5
  • C. Neal StewartJr.
    • 1
    • 4
  1. 1.Graduate School of Genome Science and TechnologyUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Food Science and TechnologyUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of Mechanical, Aerospace, and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA
  4. 4.Department of Plant SciencesUniversity of TennesseeKnoxvilleUSA
  5. 5.Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityRaleighUSA

Personalised recommendations