Skip to main content
Log in

Cinnamon: does it hold its promises in cows? Using non-targeted blood serum metabolomics profiling to test the effects of feeding cinnamon to dairy cows undergoing lactation-induced insulin resistance

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Cinnamon exerts insulin-enhancing activity in vitro and was demonstrated to improve blood glucose and lipid profiles in several human studies. Such effects may have an impact on metabolically stressed cows.

Objective

To study the effects of cinnamon supplementation during the transition from late pregnancy to early lactation on the metabolism in dairy cows.

Methods

Twenty-four Holstein cows (n = 8/group) were assigned to either the control group (CTR; without supplementation) or the supplementation groups [supplemental cinnamon at 20 (LCIN) or 40 (HCIN) g/cow per day (d)] from 28 d before calving until 21 d thereafter. Blood samples were assayed for glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), and insulin; an index estimating insulin sensitivity (RQUICKI) was calculated. The serum metabolome was characterized in the samples collected from d 14 using a non-targeted approach.

Results

The serum concentrations of glucose and insulin did not differ among groups and followed a similar pattern over time. The serum NEFA concentrations were greater in LCIN (d 2, 7, and 14) and HCIN (d 14) than in CTR. On d 14 and 21, LCIN and HCIN had greater serum BHBA concentrations than CTR cows. The top 10 metabolites identified with significantly higher levels in the supplemented than the CTR cows were related to fatty acid metabolism.

Conclusion

The data suggest lipolytic and ketogenic effects of cinnamon supplementation in dairy cows during the transition from late gestation to early lactation. The fatty acid metabolites found elevated in the supplemented cows point towards impaired mitochondrial fatty acid β-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham, K., Wöhrlin, F., Lindtner, O., Heinemeyer, G., & Lampen, A. (2010). Toxicology and risk assessment of coumarin: focus on human data. Molecular Nutrition and Food Research, 54, 228–239.

    Article  CAS  PubMed  Google Scholar 

  • Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, IL.

    Google Scholar 

  • Anand, P., Murali, K. Y., Tandon, V., Murthy, P. S., & Chandra, R. (2010). Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chemico-Biological Interactions, 186, 72–81.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. A., Broadhurst, C. L., Polansky, M. M., Schmidt, W. F., Khan, A., Flanagan, V. P., et al. (2004). Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. Journal of Agricultural and Food Chemistry, 52, 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, K., & Gompertz, D. (1974). The specificity of glycine-N-acylase and acylglycine excretion in the organicacidemias. Biochemical Medicine, 10, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Bauman, D. E., & Currie, W. B. (1980). Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science, 63, 1514–1529.

    Article  CAS  PubMed  Google Scholar 

  • Bell, W., & Bauman, D. E. (1997). Adaptations of glucose metabolism during pregnancy and lactation. Journal of Mammary Gland Biology and Neoplasia, 2, 265–278.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M. J., Powell, S., Swartling, D. J., & Gibson, K. M. (1994). Tiglylglycine excreted in urine in disorders of isoleucine metabolism and the respiratory chain measured by stable isotope dilution GC-MS. Clinical Chemistry, 40, 1879–1883.

    CAS  PubMed  Google Scholar 

  • Bennett, M. J., Sherwood, W. G., Gibson, K. M., Burlina, A. B., & Inherit, J. (1993). Secondary inhibition of multiple NAD-requiring dehydrogenases in respiratory chain complex I deficiency: possible metabolic markers for the primary defect. Journal of Inherited Metabolic Disease, 16, 560–562.

    Article  CAS  PubMed  Google Scholar 

  • Bonnefont, J. P., Demaugre, F., Prip-Buus, C., Saudubray, J. M., Brivet, M., Abadi, N., et al. (1999). Carnitine palmitoyltransferase deficiencies. Molecular Genetics and Metabolism, 68, 424–440.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G. K., Stokke, O., & Jellum, E. (1978). Chromatographic profile of high boiling point organic acids in human urine. Journal of Chromatography B: Biomedical Sciences and Applications, 145, 177–184.

    Article  CAS  Google Scholar 

  • Busquet, M., Calsamiglia, S., Ferret, A., Cardozo, P. W., & Kamel, C. (2005). Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. Journal of Dairy Science, 88, 2508–2516.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, E. J., Staudenmayer, J. W., & Stanek, E. J. (2006). Drug development and hormesis: Changing conceptual understanding of the dose response creates new challenges and opportunities for more effective drugs. Current Opinion in Drug Discovery and Development, 9, 117–123.

    CAS  PubMed  Google Scholar 

  • Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., & Ferret, A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90, 2580–2595.

    Article  CAS  PubMed  Google Scholar 

  • Cao, H., Polansky, M. M., & Anderson, R. A. (2007). Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Archives of Biochemistry and Biophysics, 459, 214–222.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Ma, Y., & Ma, W. (2009). Pharmacokinetics and bioavailability of cinnamic acid after oral administration of ramulus cinnamomi in rats. European Journal of Drug Metabolism and Pharmacokinetics, 34, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Couturier, K., Batandier, C., Awada, M., Hininger-Favier, I., Canini, F., & erson, R. A., et al. (2010). Cinnamon improves insulin sensitivity and alters the body composition in an animal model of the metabolic syndrome. Archives of Biochemistry and Biophysics, 501, 158–161.

    Article  CAS  PubMed  Google Scholar 

  • Doepel, L., Lapierre, H., & Kennelly, J. J. (2002). Peripartum performance and metabolism of dairy cows in response to prepartum energy and protein intake. Journal of Dairy Science, 85, 2315–2334.

    Article  CAS  PubMed  Google Scholar 

  • Drackley, J. K., Overton, T. R., & Douglas, G. N. (2001). Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. Journal of Dairy Science, 84, E100–E112.

    Article  CAS  Google Scholar 

  • Duffield, T. F., Kelton, D. F., Leslie, K. E., Lissemore, K. D., & Lumsden, J. H. (1997). Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Canadian Veterinary Journal, 38, 713–718.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goff, J. P., Kehrli, M. E. Jr., & Horst, R. L. (1989). Periparturient hypocalcemia in cows: Prevention using intramuscular parathyroid hormone. Journal of Dairy Science, 72, 1182–1187.

    Article  CAS  PubMed  Google Scholar 

  • Hafizur, R. M., Hameed, A., Shukrana, M., Raza, S. A., Chishti, S., Kabir, N., et al. (2015). Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 22, 297–300.

    Article  CAS  Google Scholar 

  • Hallier, A., Noirot, V., Medina, B., Leboeuf, L., & Cavret, S. (2013). Development of a method to determine essential oil residues in cow milk. Journal of Dairy Science, 96, 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  • Han, C., & Cui, B. (2012). Improvement of the bioavailability and glycaemic metabolism of cinnamon oil in rats by liquid loadable tablets. Scientific World Journal, 2012, 681534.

    PubMed  PubMed Central  Google Scholar 

  • Hlebowicz, J., Darwiche, G., Bjorgell, O., & Almer, L. O. (2007). Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. American Journal of Clinical Nutrition, 85, 1552–1556.

    CAS  PubMed  Google Scholar 

  • Holtenius, P., & Holtenius, K. (2007). A model to estimate insulin sensitivity in dairy cows. Acta Veterinaria Scandinavica, 49, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoskins, J. A., Holliday, S. B., & Greenway, A. M. (1984). The metabolism of cinnamic acid by healthy and phenylketonuric adults: A kinetic study. Biomedical Mass Spectrometry, 11, 296–300.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A., Safdar, M., Ali Khan, M. M., Khattak, K. N., & Anderson, R. A. (2003). Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetic Care, 26, 3215–3218.

    Article  Google Scholar 

  • Kim, S. H., Hyun, S. H., & Choung, S. Y. (2006). Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of Ethnopharmacology, 104, 119–123.

    Article  PubMed  Google Scholar 

  • De Koster, J. D., & Opsomerm, G. (2013). Insulin resistance in dairy cows. Veterinary Clinics of North America: Food Animal Practice, 29, 299–322.

    PubMed  Google Scholar 

  • Larsen, M., & Kristensen, N. B. (2013). Precursors for liver gluconeogenesis in periparturient dairy cows. Animal, 7, 1640–1650.

    Article  CAS  PubMed  Google Scholar 

  • McNamara, J. P. (1991). Regulation of adipose tissue metabolism in support of lactation: A Review. Journal of Dairy Science, 74, 706–719.

    Article  CAS  PubMed  Google Scholar 

  • NRC. (2001). Nutrient requirements of dairy cattle. 7th rev. ed. National Research Council, Washington, DC.

    Google Scholar 

  • Patel, O. V., Takahashi, T., Takenouchi, N., Hirako, M., Saski, N., & Domeki, I. (1996). Peripheral cortisol levels throughout gestation in the cow: effect of stage of gestation and foetal number. British Veterinary Journal, 152, 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Pires, J. A. A., Souza, A. H., & Grummer, R. R. (2005). Induction of hyperlipidemia by intravenous infusion of tallow emulsion causes insulin resistance in Holstein cows. Journal of Dairy Science, 90, 2735–2744.

    Article  Google Scholar 

  • Ranasinghe, P., Pigera, S., Premakumara, G. A., Galappaththy, P., Constantine, G. R., & Katulanda, P. (2013). Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complementary and Alternative Medicine, 13, 275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds, A. R. (2010). Potential relevance of bell-shaped and u-shaped dose–responses for the therapeutic targeting of angiogenesis in cancer. Dose Response, 8, 253–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano, H., Kato, Y., Takebayashi, A., & Shiga, A. (1999). Effects of supplemental chromium and isolation stress on tissue responsiveness and sensitivity to insulin in sheep. Small Ruminant Research, 33, 239–246.

    Article  Google Scholar 

  • Schooneman, M. G., Vaz, F. M., Houten, S. M., & Soeters, M. R. (2013). Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes, 62, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, X., Zhang, Y., Gong, Z., Huang, C., & Zang, Y. Q. (2008). Improved insulin resistance and lipid metabolism by cinnamon extract through activation of peroxisome proliferator-activated receptors. PPAR Research, 2008, 581348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon, T. P., & Blannin, A. K. (2009). Changes in glucose tolerance and insulin sensitivity following 2 weeks of daily cinnamon ingestion in healthy humans. European Journal of Applied Physiology, 105, 969–976.

    Article  CAS  PubMed  Google Scholar 

  • Spanghero, M., Robinson, P. H., Zanfi, C., & Fabbro, E. (2009). Effect of increasing doses of a microcapsulated blend of essential oils on performance of lactating primiparous dairy cows. Animal Feed Science and Technology, 153, 153–157.

    Article  CAS  Google Scholar 

  • Tager, L. R., & Krause, K. M. (2011). Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. Journal of Dairy Science, 94, 2455–2464.

    Article  CAS  PubMed  Google Scholar 

  • Tekippe, J. A., Tacoma, R., Hristov, A. N., Lee, C., Oh, J., Heyler, K. S., et al. (2013). Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. Journal of Dairy Science, 96, 7892–7903.

    Article  CAS  PubMed  Google Scholar 

  • Thuillier, L., Rostane, H., Droin, V., Demaugre, F., Brivet, M., Kadhom, N., et al. (2003). Correlation between genotype, metabolic data, and clinical presentation in carnitine palmitoyltransferase 2 (CPT2) deficiency. Human Mutation, 21, 493–501.

    Article  CAS  PubMed  Google Scholar 

  • Vakili, A. R., Khorrami, B., Danesh Mesgaran, M., & Parand, E. (2013). The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian Australasian Journal of Animal Sciences, 26, 935–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Berg, R. A., CJ Hoefsloot, H., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Epps-Fung, M., Williford, J., Wells, A., & Hardy, R. W. (1997). Fatty acid-induced insulin resistance in adipocytes. Endocrinology, 138, 4338–4345.

    Article  PubMed  Google Scholar 

  • Vernon, R. G. (2005). Lipid metabolism during lactation: A review of adipose-liver interactions and the development of fatty liver. Journal of Dairy Research, 72, 1–10.

    Article  Google Scholar 

  • Wall, E. H., Doane, P. H., Donkin, S. S., & Bravo, D. (2014). The effects of supplementation with a blend of cinnamaldehyde and eugenol on feed intake and milk production of dairy cows. Journal of Dairy Science, 97, 5709–5717.

    Article  CAS  PubMed  Google Scholar 

  • White, M. F. (1997). The insulin signaling system and the IRS proteins. Diabetologia, 40, S2–S17.

    Article  CAS  PubMed  Google Scholar 

  • Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1, 92–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Sinelnikov, I., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Zhao, X., Lu, X., Lin, X., & Xu, G. (2015). A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Frontiers in Molecular Biosciences. doi:10.3389/fmolb.2015.00004.

    Google Scholar 

  • Yang, W. Z., Ametaj, B. N., Benchaar, C., & Beauchemin, K. A. (2010a). Dose response to cinnamaldehyde supplementation in growing beef heifers: Ruminal and intestinal digestion. Journal of Animal Science, 88, 680–688.

  • Yang, W. Z., Ametaj, B. N., He, M. L., Benchaar, C., & Beauchemin, K. A. (2010b). Cinnamaldehyde in feedlot cattle diets: Intake, growth performance, carcass characteristics, and blood metabolites. Journal of Animal Science, 88, 1082–1092.

Download references

Acknowledgements

The authors express their appreciation to the staff of Shirsar Dairy Facilities (Varamin, Iran) for diligent animal care and to Dr. M. Tabatabaii (Varamin, Iran) for his help in conducting this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Sauerwein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadri, H., Alizadeh, A., Vakili, H. et al. Cinnamon: does it hold its promises in cows? Using non-targeted blood serum metabolomics profiling to test the effects of feeding cinnamon to dairy cows undergoing lactation-induced insulin resistance. Metabolomics 13, 28 (2017). https://doi.org/10.1007/s11306-016-1151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1151-1

Keywords

Navigation