Advertisement

Metabolomics

, 12:186 | Cite as

Metabolite profiling of developing Camelina sativa seeds

  • Anthony Quéro
  • Roland Molinié
  • David Mathiron
  • Benjamin Thiombiano
  • Jean-Xavier Fontaine
  • Déborah Brancourt
  • Olivier Van Wuytswinkel
  • Emmanuel Petit
  • Hervé Demailly
  • Gaëlle Mongelard
  • Serge Pilard
  • Brigitte Thomasset
  • François MesnardEmail author
Original Article

Abstract

Introduction

Camelina sativa is a Brassicaceae with interesting agronomic potential and is considered an alternative oilseed crop. Currently, Camelina is grown mainly for its seed, which shows a high oil content with an unusual fatty acid profile particularly rich in polyunsaturated fatty acids. Camelina seeds contain other potentially valuable compounds and their composition is now relatively well described. However, little information is available on the accumulation dynamics of these compounds during seed development.

Objectives

Our aim is to describe the dynamics of metabolites accumulation during C. sativa seed development.

Methods

After purification by HPLC, the fractions were analyzed by LC–MS and NMR to characterize new compounds. The dynamic of metabolites accumulation during seed development was monitored during 15, 25 and 35 days after flowering, and metabolic profilings were performed by LC–MS and GC–MS.

Results

This study describes for the first time two compounds (quercetin-5b-O-sinapyl-2″-O-apiosyl-3-O-rutinoside and epicatechin-7-O-glucose) that have not previously been identified in the seeds of C. sativa. We also show the accumulation kinetics of various metabolites involved in seed development. These investigations highlight a major reorganization of the metabolome with a depletion of the content of most primary metabolites and a high accumulation of most fatty acids, glucosinolates, flavonoids and sinapic acid derivatives.

Conclusion

This study resulted in the metabolic profile of C. sativa during seed development and enabled to identify two novel compounds in Camelina seeds.

Keywords

Camelina sativa Seed development NMR LC/MS GC/MS 

Notes

Acknowledgements

This work was performed, in partnership with the SAS PIVERT, within the framework of the French Institute for Energy Transition (“Institut pour la Transition Energétique”—ITE) P.I.V.E.R.T. (www.institut-pivert.com < http://www.institut-pivert.com>) selected as an Investment for the Future (“Investissements d’Avenir”). This work was supported, as part of Investments for the Future, by the French Government under the reference ANR-001-01. The European Regional Development Fund (equipment acquired) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

11306_2016_1135_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 Summary table of LC-MS analysis. Supplementary material 1 (XLSX 15 kb)
11306_2016_1135_MOESM2_ESM.docx (1 mb)
Supplementary material 2 NMR analysis for quercetin-5b-O-sinapyl-2′′-O-apiosyl-3-O-rutinoside. Supplementary material 2 (DOCX 1033 kb)
11306_2016_1135_MOESM3_ESM.docx (1.1 mb)
Supplementary material 3 NMR analysis for epicatechin-7-O-glucose. Supplementary material 3 (DOCX 1083 kb)
11306_2016_1135_MOESM4_ESM.xlsx (10 kb)
Supplementary material 4 Supplementary material 4 (XLSX 10 kb)

References

  1. Andersen, M., Jordheim, M., Byamukama, R., Mbabazi, A., Ogweng, G., Skaar, I., et al. (2010). Anthocyanins with unusual furanose sugar (apiose) from leaves of Synadenium grantii (Euphorbiaceae). Phytochemistry, 71, 1558–1563.CrossRefPubMedGoogle Scholar
  2. Angelovici, R., Galili, G., Fernie, A. R., & Fait, A. (2010). Seed desiccation: A bridge between maturation and germination. Trends in Plant Science, 15, 211–218.CrossRefPubMedGoogle Scholar
  3. Berhow, M. A., Polat, U., Glinski, J. A., Glensk, M., Vaughn, S. F., Isbell, T., et al. (2013). Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Industrial Crops and Products, 43, 119–125.CrossRefGoogle Scholar
  4. Berhow, M. A., Vaughn, S. F., Moser, B. R., Belenli, D., & Polat, U. (2014). Evaluating the phytochemical potential of Camelina: An emerging new crop of old world origin. In R. Jetter (Ed.), Recent Advances in Phytochemistry (pp. 142–148). Cham: Springer.Google Scholar
  5. Berti, M., Wilckens, R., Fischer, S., Solis, A., & Johnson, B. (2011). Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Industrial Crops and Products, 34, 1358–1365.CrossRefGoogle Scholar
  6. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.CrossRefPubMedGoogle Scholar
  7. Chen, X.-Q., Zan, K., Yang, J., Lai, M.-X., & Wang, Q. (2009). A novel flavanone from Ilex hainanensis Merr. Natural Product Research, 23, 442–447.CrossRefPubMedGoogle Scholar
  8. Chung, S.-K., Osawa, T., & Kawakishi, S. (1997). Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Bioscience, Biotechnology, and Biochemistry, 61, 118–123.CrossRefGoogle Scholar
  9. Clarke, D. B. (2010). Glucosinolates, structures and analysis in food. Analytical Methods, 2, 301–416.CrossRefGoogle Scholar
  10. Cren-Olivé, C., Wieruszeski, J., Maes, E., & Rolando, C. (2002). Catechin and epicatechin deprotonation followed by 13C NMR. Tetrahedron Letters, 43, 4545–4549.CrossRefGoogle Scholar
  11. Cui, C.-B., Tezuka, Y., Kikuchi, T., Nakano, H., Tamaoki, T., & Park, J.-H. (1992). Constituents of a fern, Davallia mariesii MOORE. IV. Isolation and structures of a novel norcarotane sesquiterperne glycoside, a chromone glucuronide, and two epicatechin glycosides. Chemical and Pharmaceutical Bulletin, 40, 2035–2040.CrossRefGoogle Scholar
  12. Donovan, J. L., Luthria, D. L., Stremple, P., & Waterhouse, A. L. (1999). Analysis of (+)-catechin, (−)-epicatechin and their 3′- and 4′-O-methylated analogs: A comparison of sensitive methods. Journal of Chromatography B, 726, 277–283.CrossRefGoogle Scholar
  13. Duan, L.-X., Feng, B.-M., Chen, F., Liu, J.-Y., Li, F., Wang, Y.-Q., et al. (2007). Sinapic acid derivatives from the seeds of Raphanus nussatirus L. Journal of Asian Natural Products Research, 9, 557–561.CrossRefPubMedGoogle Scholar
  14. Fadel, O., El Kirat, K., & Morandat, S. (2011). The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochimica et Biophysica Acta, 1808, 2973–2980.CrossRefPubMedGoogle Scholar
  15. Fait, A., Angelovici, R., Less, H., Ohad, I., Urbanczyk-Wochniak, E., Fernie, A. R., et al. (2006). Arabidopsis seed development and germination is associated with temporally distinct metabolic switches1[W]. Plant Physiology, 142, 839–854.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fathiazad, F., Delazar, A., Amiri, R., & Sarker, S. (2006). Extraction of flavonoids and quantification of rutin from waste tobacco leaves. Iranian Journal of Pharmaceutical Research, 3, 222–227.Google Scholar
  17. Foo, L. Y., & Karchesy, J. J. (1989). Polyphenolic glycosides from douglas fir inner bark. Phytochemistry, 28, 1237–1240.CrossRefGoogle Scholar
  18. Gräwe, W., & Strack, D. (1986). Partial purification and some properties of l-sinapoylglucose: choline cinapoyltransferase (“sinapine synthase”) from seeds of Raphanus sativus L. and Sinapis alba L. Zeitschrift für Naturforschung C, 41, 28–33.Google Scholar
  19. Gugel, R. K., & Falk, K. C. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86, 1047–1058.CrossRefGoogle Scholar
  20. Guvenalp, Z., Kilic, N., Kazaz, C., Kaya, Y., & Demirezer, O. (2006). Chemical constituents of Galium tortumense. Turkish Journal of Chemistry, 30, 515–523.Google Scholar
  21. Hatano, T., Miyatake, H., Natsume, M., Osakabe, N., Takizawa, T., Ito, H., et al. (2002). Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry, 59, 749–758.CrossRefPubMedGoogle Scholar
  22. Hernandez, I., Alegre, L., Van Breusegem, F., & Munné-Bosch, S. (2009). How relevant are flavonoids as antioxidants in plants? Trends in Plant Sciences, 14, 125–132.CrossRefGoogle Scholar
  23. Jung, M., Choi, J., Chae, H.-S., Cho, J. Y., Kim, Y.-D., Htwe, K. M., et al. (2015). Flavonoids from Symplocos racemosa. Molecules, 20, 358–365.CrossRefGoogle Scholar
  24. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry–based metabolite profiling in plants. Nature Protocols, 1, 387–396.CrossRefPubMedGoogle Scholar
  25. Marek, R., De Groot, A., Dommisse, R., Lemière, G., & Potacek, M. (1997). (+)#-Catechin: Benzoyl protection of OH groups and NMR study of products. Chemical Papers, 51, 107–110.Google Scholar
  26. Matthäus, B., & Zubr, J. (2000). Variability of specific components in Camelina sativa oilseed cakes. Industrial Crops and Products, 12, 9–18.CrossRefGoogle Scholar
  27. Moser, B. R. (2010). Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technology, 22, 270–273.CrossRefGoogle Scholar
  28. Naczk, M., Amarowicz, R., Sullivan, A., & Shahidi, F. (1998). Current research developments on polyphenolics of rapeseed/canola: A review. Food Chemistry, 62, 489–502.CrossRefGoogle Scholar
  29. Niciforovic, N., & Abramovi, H. (2014). Sinapic acid and its derivatives: Natural sources and bioactivity. Comprehensive Reviews in Food Science and Food Safety, 13, 34–51.CrossRefGoogle Scholar
  30. Quéro, A., Jousse, C., Lequart-Pillon, M., Gontier, E., Guillot, X., Courtois, B., et al. (2014). Improved stability of TMS derivatives for the robust quantification of plant polar metabolites by gas chromatography–mass spectrometry. Journal of Chromatography B, 970, 36–43.CrossRefGoogle Scholar
  31. Rodríguez-Rodríguez, M. F., Sánchez-García, A., Salas, J. J., Garcés, R., & Martínez-Force, E. (2013). Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Industrial Crops and Products, 50, 673–679.CrossRefGoogle Scholar
  32. Russo, R., & Reggiani, R. (2012). Antinutritive compounds in twelve Camelina sativa genotypes. American Journal of Plant Sciences, 3, 1408–1412.CrossRefGoogle Scholar
  33. Schuster, A., & Friedt, W. (1998). Glucosinolate content and composition as parameters of quality of Camelina seed. Industrial Crops and Products, 7, 297–302.CrossRefGoogle Scholar
  34. Terpinc, P., Polak, T., Makuc, D., Ulrih, N. P., & Abramovic, H. (2012). The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil. Food Chemistry, 131, 580–589.CrossRefGoogle Scholar
  35. Vollmann, J., Moritz, T., Kargl, C., Baumgartner, S., & Wagentristl, H. (2007). Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Industrial Crops and Products, 26, 270–277.CrossRefGoogle Scholar
  36. Waraich, E. A., Ahmed, Z., Ahmad, R., Saifullah, M. Y. A., Naeem, M. S., & Rengel, Z. (2013). Camelina sativa, a climate proof crop, has high nutritive value and multiple-uses: A review. Australian Journal of Crops Science, 7, 1551–1559.Google Scholar
  37. Zubr, J. (2010). Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutrition and Food Science, 40, 523–531.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anthony Quéro
    • 1
  • Roland Molinié
    • 1
  • David Mathiron
    • 2
  • Benjamin Thiombiano
    • 1
  • Jean-Xavier Fontaine
    • 1
  • Déborah Brancourt
    • 1
  • Olivier Van Wuytswinkel
    • 1
  • Emmanuel Petit
    • 1
  • Hervé Demailly
    • 3
  • Gaëlle Mongelard
    • 3
  • Serge Pilard
    • 2
  • Brigitte Thomasset
    • 4
  • François Mesnard
    • 1
    Email author
  1. 1.EA 3900-BIOPI Biologie des Plantes et Innovation, Département Génie Biologique, Le Bailly et Faculté de Pharmacie, IUT d’AmiensUniversité de Picardie Jules VerneAmiens CedexFrance
  2. 2.Université de Picardie Jules Verne, Plate-Forme AnalytiqueAmiensFrance
  3. 3.Centre de Ressources Régionales en Biologie MoléculaireUniversité de Picardie Jules VerneAmiensFrance
  4. 4.Sorbonne Universités, CNRS-FRE 3580, GEC, Université de Technologie de Compiègne, CS 60319Compiègne CedexFrance

Personalised recommendations