Metabolomics

, 12:185 | Cite as

Metabolomics profiling of concussion in adolescent male hockey players: a novel diagnostic method

  • Mark Daley
  • Greg Dekaban
  • Robert Bartha
  • Arthur Brown
  • Tanya Charyk Stewart
  • Timothy Doherty
  • Lisa Fischer
  • Jeff Holmes
  • Ravi S. Menon
  • C. Anthony Rupar
  • J. Kevin Shoemaker
  • Douglas D. Fraser
Original Article

Abstract

Introduction

Concussions are a major health concern as they cause significant acute symptoms and in some athletes, long-term neurologic dysfunction. Diagnosis of concussion can be difficult, as are the decisions to stop play.

Objective

To determine if concussions in adolescent male hockey players could be diagnosed using plasma metabolomics profiling.

Methods

Plasma was obtained from 12 concussed and 17 non-concussed athletes, and assayed for 174 metabolites with proton nuclear magnetic resonance and direct injection liquid chromatography tandem mass spectrometry. Data were analysed with multivariate statistical analysis and machine learning.

Results

The estimated time from concussion occurrence to blood draw at the first clinic visit was 2.3 ± 0.7 days. Using principal component analysis, the leading 10 components, each containing 9 metabolites, were shown to account for 82 % of the variance between cohorts, and relied heavily on changes in glycerophospholipids. Cross-validation of the classifier using a leave-one out approach demonstrated a 92 % accuracy rate in diagnosing a concussion (P < 0.0001). The number of metabolites required to achieve the 92 % diagnostic accuracy was minimized from 174 to as few as 17 metabolites. Receiver operating characteristic analyses generated an area under the curve of 0.91, indicating excellent concussion diagnostic potential.

Conclusion

Metabolomics profiling, together with multivariate statistical analysis and machine learning, identified concussed athletes with >90 % certainty. Metabolomics profiling represents a novel diagnostic method for concussion, and may be amenable to point-of-care testing.

Keywords

Concussion Diagnosis Biomarker Metabolomics Adolescents Ice hockey 

Supplementary material

11306_2016_1131_MOESM1_ESM.pdf (28 kb)
Supplementary material 1 (PDF 28 kb)
11306_2016_1131_MOESM2_ESM.pdf (7 kb)
Supplementary material 2 (PDF 6 kb)

References

  1. Braverman, N. E., & Moser, A. B. (2012). Functions of plasmalogen lipids in health and disease. Biochimica et Biophysica Acta, 1822(9), 1442–1452. doi:10.1016/j.bbadis.2012.05.008.CrossRefPubMedGoogle Scholar
  2. Brisson, A. R., Matsui, D., Rieder, M. J., & Fraser, D. D. (2012). Translational research in pediatrics: Tissue sampling and biobanking. Pediatrics, 129(1), 153–162. doi:10.1542/peds.2011-0134.CrossRefPubMedGoogle Scholar
  3. Bujak, R., Struck-Lewicka, W., Markuszewski, M. J., & Kaliszan, R. (2014). Metabolomics for laboratory diagnostics. Journal of Pharmaceutical and Biomedical Analysis. doi:10.1016/j.jpba.2014.12.017.Google Scholar
  4. Di Battista, A. P., Rhind, S. G., & Baker, A. J. (2013). Application of blood-based biomarkers in human mild traumatic brain injury. Frontiers in Neurology, 4, 44. doi:10.3389/fneur.2013.00044.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Farooqui, A. A., Horrocks, L. A., & Farooqui, T. (2000). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chemistry and Physics of Lipids, 106(1), 1–29.CrossRefPubMedGoogle Scholar
  6. Gillio-Meina, C., Cepinskas, G., Cecchini, E. L., & Fraser, D. D. (2013). Translational research in pediatrics II: blood collection, processing, shipping, and storage. Pediatrics, 131(4), 754–766. doi:10.1542/peds.2012-1181.CrossRefPubMedGoogle Scholar
  7. Glaviano, N. R., Benson, S., Goodkin, H. P., Broshek, D. K., & Saliba, S. (2015). Baseline SCAT2 assessment of healthy youth student-athletes: Preliminary evidence for the use of the child-SCAT3 in children younger than 13 years. Clinical Journal of Sport Medicine, 25(4), 373–379. doi:10.1097/JSM.0000000000000154.CrossRefPubMedGoogle Scholar
  8. Guskiewicz, K. M., Register-Mihalik, J., McCrory, P., McCrea, M., Johnston, K., Makdissi, M., et al. (2013). Evidence-based approach to revising the SCAT2: Introducing the SCAT3. British Journal of Sports Medicine, 47(5), 289–293. doi:10.1136/bjsports-2013-092225.CrossRefPubMedGoogle Scholar
  9. Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian Journal of Internal Medicine, 4(2), 627–635.PubMedPubMedCentralGoogle Scholar
  10. Halstead, M. E., & Walter, K. D. (2010). Sport-related concussion in children and adolescents. Pediatrics, 126(3), 597–615. doi:10.1542/peds.2010-2005.CrossRefPubMedGoogle Scholar
  11. Harmon, K. G., Drezner, J. A., Gammons, M., Guskiewicz, K. M., Halstead, M., Herring, S. A., et al. (2013). American Medical Society for sports medicine position statement: Concussion in sport. British Journal of Sports Medicine, 47(1), 15–26. doi:10.1136/bjsports-2012-091941.CrossRefPubMedGoogle Scholar
  12. Jeter, C. B., Hergenroeder, G. W., Hylin, M. J., Redell, J. B., Moore, A. N., & Dash, P. K. (2013). Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. Journal of Neurotrauma, 30(8), 657–670. doi:10.1089/neu.2012.2439.CrossRefPubMedGoogle Scholar
  13. Karlin, A. M. (2011). Concussion in the pediatric and adolescent population: “Different population, different concerns”. PM&R, 3(10 Suppl 2), S369–S379. doi:10.1016/j.pmrj.2011.07.015.CrossRefGoogle Scholar
  14. Lehmann, R., Zhao, X., Weigert, C., Simon, P., Fehrenbach, E., Fritsche, J., et al. (2010). Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. PLoS One, 5(7), e11519. doi:10.1371/journal.pone.0011519.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lovell, M. R., Collins, M. W., Iverson, G. L., Johnston, K. M., & Bradley, J. P. (2004). Grade 1 or “ding” concussions in high school athletes. American Journal of Sports Medicine, 32(1), 47–54.CrossRefPubMedGoogle Scholar
  16. Lovell, M. R., & Solomon, G. S. (2013). Neurocognitive test performance and symptom reporting in cheerleaders with concussions. Journal of Pediatrics, 163(4), 1192–1195. doi:10.1016/j.jpeds.2013.05.061.CrossRefPubMedGoogle Scholar
  17. Lutjohann, D., Breuer, O., Ahlborg, G., Nennesmo, I., Siden, A., Diczfalusy, U., et al. (1996). Cholesterol homeostasis in human brain: Evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proceedings of the National Academy of Sciences, 93(18), 9799–9804.CrossRefGoogle Scholar
  18. McCrory, P., Meeuwisse, W., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R. J., et al. (2013). Consensus statement on concussion in sport—the 4th International conference on concussion in sport held in Zurich, November 2012. Clinical Journal of Sport Medicine, 23(2), 89–117. doi:10.1097/JSM.0b013e31828b67cf.CrossRefPubMedGoogle Scholar
  19. Meier, T. B., Brummel, B. J., Singh, R., Nerio, C. J., Polanski, D. W., & Bellgowan, P. S. (2015). The underreporting of self-reported symptoms following sports-related concussion. Journal of Science and Medicine in Sport, 18(5), 507–511. doi:10.1016/j.jsams.2014.07.008.CrossRefPubMedGoogle Scholar
  20. Morrison, G., Fraser, D. D., & Cepinskas, G. (2013). Mechanisms and consequences of acquired brain injury during development. Pathophysiology, 20(1), 49–57. doi:10.1016/j.pathophys.2012.02.006.CrossRefPubMedGoogle Scholar
  21. O’Brien, J. S., & Sampson, E. L. (1965). Lipid composition of the normal human brain: Gray matter, white matter, and myelin. Journal of Lipid Research, 6(4), 537–544.PubMedGoogle Scholar
  22. Papa, L., Ramia, M. M., Edwards, D., Johnson, B. D., & Slobounov, S. M. (2015). Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. Journal of Neurotrauma, 32(10), 661–673. doi:10.1089/neu.2014.3655.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pellman, E. J., Lovell, M. R., Viano, D. C., & Casson, I. R. (2006). Concussion in professional football: Recovery of NFL and high school athletes assessed by computerized neuropsychological testing–Part 12. Neurosurgery, 58(2), 263–274. doi:10.1227/01.NEU.0000200272.56192.62.CrossRefPubMedGoogle Scholar
  24. Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011). The human serum metabolome. PLoS One, 6(2), e16957. doi:10.1371/journal.pone.0016957.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Saude, E. J., Slupksy, C. M., & Sykes, B. D. (2006). Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics, 2(3), 113–123.CrossRefGoogle Scholar
  26. Shouval, R., Bondi, O., Mishan, H., Shimoni, A., Unger, R., & Nagler, A. (2014). Application of machine learning algorithms for clinical predictive modeling: A data-mining approach in SCT. Bone Marrow Transplantation, 49(3), 332–337. doi:10.1038/bmt.2013.146.CrossRefPubMedGoogle Scholar
  27. Stewart, T. C., Gilliland, J., & Fraser, D. D. (2014). An epidemiologic profile of pediatric concussions: Identifying urban and rural differences. Journal of Trauma and Acute Care Surgery, 76(3), 736–742. doi:10.1097/TA.0b013e3182aafdf5.CrossRefPubMedGoogle Scholar
  28. Toledo, E., Lebel, A., Becerra, L., Minster, A., Linnman, C., Maleki, N., et al. (2012). The young brain and concussion: Imaging as a biomarker for diagnosis and prognosis. Neuroscience and Biobehavioral Reviews, 36(6), 1510–1531. doi:10.1016/j.neubiorev.2012.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  29. van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579–2605.Google Scholar
  30. Vitali, C., Wellington, C. L., & Calabresi, L. (2014). HDL and cholesterol handling in the brain. Cardiovascular Research, 103(3), 405–413. doi:10.1093/cvr/cvu148.CrossRefPubMedGoogle Scholar
  31. Yudkoff, M. (1997). Brain metabolism of branched-chain amino acids. Glia, 21(1), 92–98.CrossRefPubMedGoogle Scholar
  32. Zhu, W., Zeng, N., Wang, N. (2010). Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. In Northeast SAS Users Group Proceedings. Retrived from http://www.lexjansen.com/nesug/nesug10/hl/hl07.pdf

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mark Daley
    • 1
  • Greg Dekaban
    • 2
  • Robert Bartha
    • 3
  • Arthur Brown
    • 4
  • Tanya Charyk Stewart
    • 5
  • Timothy Doherty
    • 6
  • Lisa Fischer
    • 7
  • Jeff Holmes
    • 8
  • Ravi S. Menon
    • 3
  • C. Anthony Rupar
    • 9
  • J. Kevin Shoemaker
    • 10
  • Douglas D. Fraser
    • 4
    • 11
    • 12
  1. 1.Department of Computer ScienceWestern UniversityLondonCanada
  2. 2.Molecular MedicineRobarts Research Institute, Western UniversityLondonCanada
  3. 3.Department of Medical BiophysicsWestern UniversityLondonCanada
  4. 4.Department of Physiology and PharmacologyWestern UniversityLondonCanada
  5. 5.Department of SurgeryWestern UniversityLondonCanada
  6. 6.Department of Physical Medicine and RehabilitationWestern UniversityLondonCanada
  7. 7.Department of Family MedicineWestern UniversityLondonCanada
  8. 8.Department of Occupational TherapyWestern UniversityLondonCanada
  9. 9.Departments of Biochemistry and Pathology and Laboratory MedicineWestern UniversityLondonCanada
  10. 10.School of KinesiologyWestern UniversityLondonCanada
  11. 11.Departments of Pediatrics and Clinical Neurological SciencesWestern UniversityLondonCanada
  12. 12.Paediatric Critical Care Medicine, Children’s Hospital, London Health Sciences CentreWestern UniversityLondonCanada

Personalised recommendations