Skip to main content
Log in

Transient decrease of hepatic NAD+ and amino acid alterations during treatment with valproate: new insights on drug-induced effects in vivo using targeted MS-based metabolomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Therapeutic administration of the drug valproate (VPA) results in metabolic changes at the hepatic level that have not been fully characterized. Interference of this branched-chain fatty acid with the oxidative metabolism of amino acids may have consequences for the downstream biosynthesis of essential cofactors.

Objectives

We aimed to evaluate the effect of VPA on amino acid and NAD+ metabolism using targeted MS-based metabolite profiling.

Methods

Plasma samples from patients under chronic treatment with VPA were analyzed. VPA was administered to Wistar rats mimicking prolonged and acute treatment, the latter with two different doses. Plasma and liver samples were collected for targeted metabolomics studies using UPLC-MS/MS and GC-FID.

Results

Analysis of amino acids in rat plasma and liver and in human plasma demonstrated that drug intake is associated with a particularly significant drop in the levels of tryptophan, and increased levels of glycine and lysine. The lowered plasma tryptophan levels prompted us to study the intracellular content of tryptophan and various nicotinamide adenine dinucleotides. A significant decrease of NAD+ and NADP+ was observed in the liver of rats after the single administration of VPA at two different doses, but not after repeated administration.

Conclusion

The observed accumulation of kynurenine intermediates in rat liver tissue suggests a drug-induced interference with the de novo pathway of NAD+ biosynthesis. These findings provide novel insights into the mechanisms of VPA associated hepatocellular dysfunction and/or toxicity, but with possible major relevance to the anticancer effects of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aires, C. C. P., IJlst, L., Stet, F., Prip-Buus, C., de Almeida, I. T., Duran, M., et al. (2010). Inhibition of hepatic carnitine palmitoyl-transferase I (CPT IA) by valproyl-CoA as a possible mechanism of valproate-induced steatosis. Biochemical Pharmacology, 79(5), 792–799. doi:10.1016/j.bcp.2009.10.011.

    Article  CAS  PubMed  Google Scholar 

  • Aires, C. C. P., van Cruchten, A., IJlst, L., de Almeida, I. T., Duran, M., Wanders, R. J. A., et al. (2011). New insights on the mechanisms of valproate-induced hyperammonemia: Inhibition of hepatic N-acetylglutamate synthase activity by valproyl-CoA. Journal of Hepatology, 55(2), 426–434. doi:10.1016/j.jhep.2010.11.031.

    Article  CAS  PubMed  Google Scholar 

  • Bai, P., Cantó, C., Oudart, H., Brunyánszki, A., Cen, Y., Thomas, C., et al. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metabolism, 13(4), 461–468. doi:10.1016/j.cmet.2011.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begriche, K., Massart, J., Robin, M.-A., Borgne-Sanchez, A., & Fromenty, B. (2011). Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. Journal of Hepatology, 54(4), 773–794. doi:10.1016/j.jhep.2010.11.006.

    Article  CAS  PubMed  Google Scholar 

  • Bhute, V. J., & Palecek, S. P. (2015). Metabolic responses induced by DNA damage and poly (ADP-ribose) polymerase (PARP) inhibition in MCF-7 cells. Metabolomics, 11(6), 1779–1791. doi:10.1007/s11306-015-0831-6.

    Article  CAS  PubMed  Google Scholar 

  • Braidy, N., Guillemin, G. J., Mansour, H., Chan-Ling, T., Poljak, A., & Grant, R. (2011). Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One, 6(4), e19194. doi:10.1371/journal.pone.0019194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo, S. E., Clauser, K. R., & Mootha, V. K. (2016). MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Research, 44, D1251–D1257. doi:10.1093/nar/gkv1003.

    Article  PubMed  Google Scholar 

  • Cantó, C., & Auwerx, J. (2012). Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacological Reviews, 64(1), 166–187. doi:10.1124/pr.110.003905.

    Article  PubMed  Google Scholar 

  • Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., et al. (2009). AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity. Nature, 458(7241), 1056–1060. doi:10.1038/nature07813.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantó, C., Houtkooper, R. H., Pirinen, E., Youn, D. Y., Oosterveer, M. H., Cen, Y., et al. (2012). The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metabolism, 15(6), 838–847. doi:10.1016/j.cmet.2012.04.022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 15, 608–624. doi:10.1038/nrc3985.

    CAS  PubMed  Google Scholar 

  • Chen, M., Suzuki, A., Borlak, J., Andrade, R. J., & Lucena, M. I. (2015). Drug-induced liver injury: Interactions between drug properties and host factors. Journal of Hepatology, 63(2), 503–514. doi:10.1016/j.jhep.2015.04.016.

    Article  CAS  PubMed  Google Scholar 

  • Činčárová, L., Zdráhal, Z., & Fajkus, J. (2013). New perspectives of valproic acid in clinical practice. Expert Opinion on Iinvestigational Drugs, 22(12), 1535–1547. doi:10.1517/13543784.2013.853037.

    Article  Google Scholar 

  • Dejligbjerg, M., Grauslund, M., Litman, T., Collins, L., Qian, X., Jeffers, M., et al. (2008). Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells. Molecular Cancer, 7(1), 70. doi:10.1186/1476-4598-7-70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duran, M. (2008). Amino acids. In N. Blau, M. Duran, & K. M. Gibson (Eds.), Laboratory guide to the methods in biochemical genetics (pp. 53–89). Berlin: Springer. doi:10.1007/978-3-540-76698-8_5.

    Chapter  Google Scholar 

  • Evans, C., Bogan, K. L., Song, P., Burant, C. F., Kennedy, R. T., & Brenner, C. (2010). NAD + metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chemical Biology, 10, 2. doi:10.1186/1472-6769-10-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Falkenberg, K. J., & Johnstone, R. W. (2014). Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nature Reviews in Drug Discovery, 13(9), 673–691. doi:10.1038/nrd4360.

    Article  CAS  PubMed  Google Scholar 

  • Fischkoff, S. A., & Walter, E. J. (1984). Induction of neutrophilic differentiation of human promyelocytic leukemic cells by branched-chain carboxylic acid anticonvulsant drugs. Journal of Biological Response Modifiers, 3(2), 132–137.

    CAS  PubMed  Google Scholar 

  • Gariani, K., Menzies, K. J., Ryu, D., Wegner, C. J., Wang, X., Ropelle, E. R., et al. (2015). Eliciting the mitochondrial unfolded protein response via NAD+ repletion reverses fatty liver disease. Hepatology. doi:10.1002/hep.28245.

    PubMed  Google Scholar 

  • Gurvich, N., Tsygankova, O. M., Meinkoth, J. L., & Klein, P. S. (2004). Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Research, 64(3), 1079–1086. doi:10.1158/0008-5472.CAN-03-0799.

    Article  CAS  PubMed  Google Scholar 

  • Hallows, W. C., Yu, W., Smith, B. C., Devries, M. K., Ellinger, J. J., Someya, S., et al. (2011). Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Molecular Cell, 41(2), 139–149. doi:10.1016/j.molcel.2011.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herskovits, A. Z., & Guarente, L. (2013). Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Research, 23(6), 746–758. doi:10.1038/cr.2013.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D. B., et al. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 464(7285), 121–125. doi:10.1038/nature08778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houten, S. M., Denis, S., te Brinke, H., Jongejan, A., van Kampen, A. H. C., Bradley, E. J., et al. (2014). Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia. Human Molecular Genetics, 23(18), 5009–5016. doi:10.1093/hmg/ddu218.

    Article  CAS  PubMed  Google Scholar 

  • Houtkooper, R. H., Cantó, C., Wanders, R. J., & Auwerx, J. (2010). The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways. Endocrine Reviews, 31(2), 194–223. doi:10.1210/er.2009-0026.

    Article  CAS  PubMed  Google Scholar 

  • Imai, S., & Yoshino, J. (2013). The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes, Obesity and Metabolism, 15(S3), 26–33. doi:10.1111/dom.12171.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, G., Motokawa, Y., Yoshida, T., & Hiraga, K. (2008). Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 84, 246–263. doi:10.2183/pjab.84.246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H.-J., Kim, J. H., Noh, S., Hur, H. J., Sung, M. J., Hwang, J.-T., et al. (2011). Metabolomic analysis of livers and serum from high-fat diet induced obese mice. Journal of Proteome Research, 10(2), 722–731. doi:10.1021/pr100892r.

    Article  CAS  PubMed  Google Scholar 

  • Ko, G. N., Korpi, E. R., Freed, W. J., Zalcman, S. J., & Bigelow, L. B. (1985). Effect of valproic acid on behavior and plasma amino acid concentrations in chronic schizophrenic patients. Biological Psychiatry, 20(2), 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Bennett, B. D., & Rabinowitz, J. D. (2008). Analytical strategies for LC–MS-based targeted metabolomics. Journal of Chromatography B, 871(2), 236–242. doi:10.1016/j.jchromb.2008.04.031.

    Article  CAS  Google Scholar 

  • Luís, P. B. M., Ruiter, J. P. N., Aires, C. C. P., Soveral, G., Tavares de Almeida, I., Duran, M., et al. (2007). Valproic acid metabolites inhibit dihydrolipoyl dehydrogenase activity leading to impaired 2-oxoglutarate-driven oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) Bioenergetics, 1767(9), 1126–1133. doi:10.1016/j.bbabio.2007.06.007.

    Article  Google Scholar 

  • Luis, P. B. M., Ruiter, J. P. N., IJlst, L., de Almeida, I. T., Duran, M., Mohsen, A. W., et al. (2011). Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway. Drug Metabolism and Disposition, 39(7), 1155–1160. doi:10.1124/dmd.110.037606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luís, P. B. M., Ruiter, J. P., Ofman, R., IJlst, L., Moedas, M., Diogo, L., et al. (2011). Valproic acid utilizes the isoleucine breakdown pathway for its complete β-oxidation. Biochemical Pharmacology, 82(11), 1740–1746. doi:10.1016/j.bcp.2011.07.103.

    Article  PubMed  Google Scholar 

  • Maciejak, P., Szyndler, J., Turzyńska, D., Sobolewska, A., Kołosowska, K., Lehner, M., et al. (2013). The kynurenine pathway: A missing piece in the puzzle of valproate action? Neuroscience, 234, 135–145. doi:10.1016/j.neuroscience.2012.12.052.

    Article  CAS  PubMed  Google Scholar 

  • Masri, S., Orozco-Solis, R., Aguilar-Arnal, L., Cervantes, M., & Sassone-Corsi, P. (2015). Coupling circadian rhythms of metabolism and chromatin remodelling. Diabetes, Obesity and Metabolism, 17(S1), 17–22. doi:10.1111/dom.12509.

    Article  CAS  PubMed  Google Scholar 

  • Masson, P., Alves, A. C., Ebbels, T. M. D., Nicholson, J. K., & Want, E. J. (2010). Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Analytical Chemistry, 82(18), 7779–7786. doi:10.1021/ac101722e.

    Article  CAS  PubMed  Google Scholar 

  • Mortensen, P. B., Kplvraa, S., & Christensen, E. (1980). Inhibition of the glycine cleavage system: hyperglycinemia and hyperglycinuria caused by valproic acid. Epilepsia, 21(6), 563–569. doi:10.1111/j.1528-1157.1980.tb04310.x.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov, A., Dolle, C., Niere, M., & Ziegler, M. (2011). Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. Journal of Biological Chemistry, 286(24), 21767–21778. doi:10.1074/jbc.M110.213298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pylvänen, V., Knip, M., Pakarinen, A., Kotila, M., Turkka, J., & Isojärvi, J. I. T. (2002). Serum insulin and leptin levels in valproate-associated obesity. Epilepsia, 43(5), 514–517. doi:10.1046/j.1528-1157.2002.31501.x.

    Article  PubMed  Google Scholar 

  • Rutter, J., Reick, M., Wu, L., & McKnight, S. (2001). Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science, 293(5529), 510–514. doi:10.1126/science.1060698.

    Article  CAS  PubMed  Google Scholar 

  • Said, H. M., Nabokina, S. M., Balamurugan, K., Mohammed, Z. M., Urbina, C., & Kashyap, M. L. (2007). Mechanism of nicotinic acid transport in human liver cells: experiments with HepG2 cells and primary hepatocytes. American Journal of Physiology and Cell Physiology, 293(6), C1773–C1778. doi:10.1152/ajpcell.00409.2007.

    Article  CAS  PubMed  Google Scholar 

  • Seifar, R. M., Ras, C., Deshmukh, A. T., Bekers, K. M., Suarez-Mendez, C. A., da Cruz, A. L. B., et al. (2013). Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1311, 115–120. doi:10.1016/j.chroma.2013.08.076.

    Article  CAS  PubMed  Google Scholar 

  • Shibata, K., Kondo, R., Sano, M., & Fukuwatari, T. (2013). Increased conversion of tryptophan to nicotinamide in rats by dietary valproate. Bioscience, Biotechnology, and Biochemistry, 77(2), 295–300. doi:10.1271/bbb.120716.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, A., Nakagawa, Y., Morishige, H., Yamamoto, A., & Fujita, T. (2006). Functional characteristics of H+-dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex. Neuroscience Letters, 392(3), 207–212. doi:10.1016/j.neulet.2005.09.030.

    Article  CAS  PubMed  Google Scholar 

  • Shin, M., Ohnishi, M., Iguchi, S., Sano, K., & Umezawa, C. (1999). Peroxisome-proliferator regulates key enzymes of the tryptophan-NAD+ pathway. Toxicology and Applied Pharmacology, 158(1), 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M. F., Aires, C. C., Luis, P. B., Ruiter, J. P., IJlst, L., Duran, M., et al. (2008). Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. Journal of Inherited Metabolic Disease, 31(2), 205–216. doi:10.1007/s10545-008-0841-x.

    Article  CAS  PubMed  Google Scholar 

  • Su, J. M., Li, X. N., Thompson, P., Ou, C. N., Ingle, A. M., Russell, H., et al. (2011). Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children’s oncology group report. Clinical Cancer Research, 17(3), 589–597. doi:10.1158/1078-0432.CCR-10-0738.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y., Takahashi, Y., Suzuki, E., Mishima, N., Inoue, K., Itoh, K., et al. (2012). Risk factors for hyperammonemia associated with valproic acid therapy in adult epilepsy patients. Epilepsy Research, 101(3), 202–209. doi:10.1016/j.eplepsyres.2012.04.001.

    Article  CAS  PubMed  Google Scholar 

  • Zanger, U. M., & Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138(1), 103–141. doi:10.1016/j.pharmthera.2012.12.007.

    Article  CAS  Google Scholar 

  • Zhang, Z. Y., Hong, D., Nam, S. H., Kim, J. M., Paik, Y. H., Joh, J. W., et al. (2015). SIRT1 regulates oncogenesis via a mutant p53-dependent pathway in hepatocellular carcinoma. Journal of Hepatology, 62(1), 121–130. doi:10.1016/j.jhep.2014.08.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ruben J. J. Ramos, Faculty of Pharmacy, Universidade de Lisboa (FFUL) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida F. B. Silva.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval for animal studies

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Ethical approval for human studies

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This study was supported by Fundação para a Ciência e a Tecnologia (FCT), Lisboa, Portugal, by a grant awarded to Marco F. Moedas (SFRH/BD/69062/2010).

Informed consent

Informed consent was obtained from the individual participants included in the study or their parents to use laboratory data.

Additional information

Ronald J. A. Wanders and Margarida F. B. Silva should be considered as equal last authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moedas, M.F., van Cruchten, A.G., IJlst, L. et al. Transient decrease of hepatic NAD+ and amino acid alterations during treatment with valproate: new insights on drug-induced effects in vivo using targeted MS-based metabolomics. Metabolomics 12, 142 (2016). https://doi.org/10.1007/s11306-016-1091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1091-9

Keywords

Navigation