Skip to main content
Log in

Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Previous metabolomics studies have revealed perturbed metabolic signatures in esophageal squamous cell carcinoma (ESCC) patients, however, most of these studies included mainly late-staged ESCC patients due to the difficulties of collecting the early-staged samples from asymptotic ESCC subjects.

Objectives

This study aims to explore the early-staged ESCC metabolic signatures and potential of serum metabolomics to diagnose ESCC at early stages.

Methods

Serum samples of 97 ESCC patients (stage 0, 39 cases; stage I, 17 cases; stage II, 11 cases, stage III, 30 cases) and 105 healthy controls (HC) were enrolled and randomly separated into training data (77 ESCCs, 84 HCs) and validation data (20 ESCCs, 21 HCs). Untargeted metabolomics was performed to identify ESCC-related metabolic signatures.

Results

The global metabolomics profiles could clearly distinguish ESCC from HC in training data. 16 ascertained metabolites were found to be disturbed in the metabolic pathways characterized by dysregulated fatty acid biosynthesis, glycerophospholipid metabolism, choline metabolism in cancer and linoleic acid metabolism. The AUC value in validation data was 0.895, with sensitivity 85.0 % and specificity 90.5 %. Good diagnostic performances were also achieved for early stage ESCC, with the values of area under the curve (AUC) 0.881 for the ESCC patients in both stage 0 and I–II. In addition, six metabolites were found to discriminate ESCC stages. Among them, three biomarkers, dodecanoic acid, LysoPA(18:1), and LysoPC(14:0), exhibited clear trend for ESCC progression.

Conclusion

These findings suggest serum metabolomics, performed in a minimally noninvasive and convenient manner, may possess great potential for early diagnosis of ESCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboagye, E. O., & Bhujwalla, Z. M. (1999). Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Research, 59, 80–84.

    CAS  PubMed  Google Scholar 

  • Banni, S., Angioni, E., Casu, V., et al. (1999). Decrease in linoleic acid metabolites as a potential mechanism in cancer risk reduction by conjugated linoleic acid. Carcinogenesis, 20, 1019–1024.

    Article  CAS  PubMed  Google Scholar 

  • Chow, C. K. (2009). Fatty acid composition of plasma phospholipids and risk of prostate cancer. Am J Clin Nutr, 89, 1946. author reply 1946–7.

    Article  CAS  PubMed  Google Scholar 

  • Crowe, F. L., Allen, N. E., Appleby, P. N., et al. (2008). Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition. American Journal of Clinical Nutrition, 88, 1353–1363.

    CAS  PubMed  Google Scholar 

  • Davis, V. W., Schiller, D. E., Eurich, D., & Sawyer, M. B. (2012). Urinary metabolomic signature of esophageal cancer and Barrett’s esophagus. World J Surg Oncol, 10, 271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawsey, S. M., Fleischer, D. E., Wang, G. Q., et al. (1998). Mucosal iodine staining improves endoscopic visualization of squamous dysplasia and squamous cell carcinoma of the esophagus in Linxian, China. Cancer, 83, 220–231.

    Article  CAS  PubMed  Google Scholar 

  • Dawsey, S. M., Lewin, K. J., Wang, G. Q., et al. (1994). Squamous esophageal histology and subsequent risk of squamous cell carcinoma of the esophagus. A prospective follow-up study from Linxian, China. Cancer, 74, 1686–1692.

    Article  CAS  PubMed  Google Scholar 

  • Djukovic, D., Baniasadi, H. R., Kc, R., Hammoud, Z., & Raftery, D. (2010). Targeted serum metabolite profiling of nucleosides in esophageal adenocarcinoma. Rapid Communications in Mass Spectrometry, 24, 3057–3062.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Z., Tang, P., Li, L., & Wang, G. (2002). The strategy for esophageal cancer control in high-risk areas of China. Japanese Journal of Clinical Oncology, 32(Suppl), S10–S12.

    Article  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu, G., Kreizman, T., & Degani, H. (2007). Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. International Journal of Cancer, 120, 1721–1730.

    Article  CAS  PubMed  Google Scholar 

  • Fang, J. L., Vaca, C. E., Valsta, L. M., & Mutanen, M. (1996). Determination of DNA adducts of malonaldehyde in humans: effects of dietary fatty acid composition. Carcinogenesis, 17, 1035–1040.

    Article  CAS  PubMed  Google Scholar 

  • Glunde, K., Bhujwalla, Z. M., & Ronen, S. M. (2011). Choline metabolism in malignant transformation. Nature Reviews Cancer, 11, 835–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glunde, K., Jacobs, M. A., & Bhujwalla, Z. M. (2006). Choline metabolism in cancer: implications for diagnosis and therapy. Expert Review Molecular Diagnostics, 6, 821–829.

    Article  CAS  Google Scholar 

  • Guanrei, Y., & Songliang, Q. (1987). Endoscopic surveys in high-risk and low-risk populations for esophageal cancer in China with special reference to precursors of esophageal cancer. Endoscopy, 19, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Hasim, A., Ma, H., Mamtimin, B., et al. (2012). Revealing the metabonomic variation of EC using (1)H-NMR spectroscopy and its association with the clinicopathological characteristics. Molecular Biology Reports, 39, 8955–8964.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, A., Nishiumi, S., Shinohara, M., et al. (2012). Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomedical Chromatography, 26, 548–558.

    Article  CAS  PubMed  Google Scholar 

  • Iorio, E., Mezzanzanica, D., Alberti, P., et al. (2005). Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Research, 65, 9369–9376.

    Article  CAS  PubMed  Google Scholar 

  • Jin, H., Qiao, F., Chen, L., Lu, C., Xu, L., & Gao, X. (2014). Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma. Journal of Proteome Research, 13, 4091–4103.

    Article  CAS  PubMed  Google Scholar 

  • Ke, C., Hou, Y., Zhang, H., et al. (2015). Large-scale profiling of metabolic dysregulation in ovarian cancer. International Journal of Cancer, 136, 516–526.

    CAS  PubMed  Google Scholar 

  • Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84, 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Huang, J., Cushnir, J. R., Spanel, P., Smith, D., & Hanna, G. B. (2012). Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-esophageal cancer. Analytical Chemistry, 84, 9550–9557.

    CAS  PubMed  Google Scholar 

  • Lin, Y., Totsuka, Y., He, Y., et al. (2013). Epidemiology of esophageal cancer in Japan and China. J Epidemiol, 23, 233–242.

    Article  PubMed  Google Scholar 

  • Liu, R., Peng, Y., Li, X., et al. (2013). Identification of plasma metabolomic profiling for diagnosis of esophageal squamous-cell carcinoma using an UPLC/TOF/MS platform. International Journal of Molecular Sciences, 14, 8899–8911.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynam-Lennon, N., Connaughton, R., Carr, E., et al. (2014). Excess visceral adiposity induces alterations in mitochondrial function and energy metabolism in esophageal adenocarcinoma. BMC Cancer, 14, 907.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, H., Hasim, A., Mamtimin, B., Kong, B., Zhang, H. P., & Sheyhidin, I. (2014). Plasma free amino acid profiling of esophageal cancer using high-performance liquid chromatography spectroscopy. World Journal of Gastroenterology, 20, 8653–8659.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mir, S. A., Rajagopalan, P., Jain, A. P., et al. (2015). LC–MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma. Journal of Proteomics, 127, 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto, M., Nishiyama, K., Nakamura, S., et al. (2010). Significance of endoscopic screening and endoscopic resection for esophageal cancer in patients with hypopharyngeal cancer. Japanese Journal of Clinical Oncology, 40, 938–943.

    Article  PubMed  Google Scholar 

  • Pearl, D. C. (2002). Proteomic patterns in serum and identification of ovarian cancer. Lancet, 360, 169–170. author reply 170–1.

    Article  PubMed  Google Scholar 

  • Pennathur, A., Gibson, M. K., Jobe, B. A., & Luketich, J. D. (2013). Oesophageal carcinoma. Lancet, 381, 400–412.

    Article  PubMed  Google Scholar 

  • Rice, T. W., Rusch, V. W., Ishwaran, H., & Blackstone, E. H. (2010). Cancer of the esophagus and esophagogastric junction: data-driven staging for the seventh edition of the American Joint Committee on Cancer/International Union Against Cancer Cancer Staging Manuals. Cancer, 116, 3763–3773.

    Article  PubMed  Google Scholar 

  • Roshandel, G., Nourouzi, A., Pourshams, A., Semnani, S., Merat, S., & Khoshnia, M. (2013). Endoscopic screening for esophageal squamous cell carcinoma. Arch Iran Med, 16, 351–357.

    PubMed  Google Scholar 

  • Shen, Z., Wu, M., Elson, P., et al. (2001). Fatty acid composition of lysophosphatidic acid and lysophosphatidylinositol in plasma from patients with ovarian cancer and other gynecological diseases. Gynecologic Oncology, 83, 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: a review. Clinical Cancer Research, 15, 431–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., & Witztum, J. L. (1989). Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. New England Journal of Medicine, 320, 915–924.

    Article  CAS  PubMed  Google Scholar 

  • Vermeersch, K. A., & Styczynski, M. P. (2013). Applications of metabolomics in cancer research. Journal of Carcinogenesis, 12, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Chen, J., Chen, L., et al. (2013). 1H-NMR based metabonomic profiling of human esophageal cancer tissue. Mol Cancer, 12, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, H., Xue, R., Lu, C., et al. (2009). Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. Journal of Chromatography B Analytical Technologies Biomedical Life Sciences, 877, 3111–3117.

    Article  CAS  Google Scholar 

  • Xu, J., Chen, Y., Zhang, R., et al. (2013). Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers. Molecular and Cellular Proteomics, 12, 1306–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakoub, D., Keun, H. C., Goldin, R., & Hanna, G. B. (2010). Metabolic profiling detects field effects in nondysplastic tissue from esophageal cancer patients. Cancer Research, 70, 9129–9136.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Wang, L., Wang, S., et al. (2013). Study of metabonomic profiles of human esophageal carcinoma by use of high-resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Analytical and Bioanalytical Chemistry, 405, 3381–3389.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Wei, W. Q., Niu, J., Liu, Z. C., Yang, C. X., & Qiao, Y. L. (2012). Cost-benefit analysis of esophageal cancer endoscopic screening in high-risk areas of China. World Journal of Gastroenterology, 18, 2493–2501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Bowers, J., Liu, L., et al. (2012a). Esophageal cancer metabolite biomarkers detected by LC–MS and NMR methods. PLoS ONE, 7, e30181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. Z., Jin, G. F., & Shen, H. B. (2012b). Epidemiologic differences in esophageal cancer between Asian and Western populations. Chinese Journal of Cancer, 31, 281–286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Liu, L., Wei, S., et al. (2011). Metabolomics study of esophageal adenocarcinoma. The Journal Thoracic and Cardiovascular Surgery, 141, 469–475. 475.e1–4.

    Article  CAS  Google Scholar 

  • Zhang, T., Wu, X., Ke, C., et al. (2013a). Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. Journal of Proteome Research, 12, 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Xu, L., Shen, J., et al. (2013b). Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochimica et Biophysica Acta, 1832, 1207–1216.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Wei, W. Q., Zhao, D. L., et al. (2012). Population-based study of DNA image cytometry as screening method for esophageal cancer. World Journal of Gastroenterology, 18, 375–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zock, P. L., & Katan, M. B. (1998). Linoleic acid intake and cancer risk: a review and meta-analysis. American Journal of Clinical Nutrition, 68, 142–153.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China (Grant Number 81573246, 81302514, 81573259, 21575151), Science and Technology Research Projects of Shandong Province (2014GSF118022), and National Natural Science Foundation of Shandong Province (RZ2014HP044). Z.-J. Z. is supported by Thousand Youth Talents Program from Chinese government and Agilent Technologies Thought Leader Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jialin Wang, Zheng-Jiang Zhu or Fuzhong Xue.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Fuzhong Xue is the primary corresponding author.

J. Wang, T. Zhang and X. Shen made equally contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, T., Shen, X. et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 12, 116 (2016). https://doi.org/10.1007/s11306-016-1050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1050-5

Keywords

Navigation