Bijlsma, S., Bobeldijk, L., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry,
78(2), 567–574.
CAS
Article
PubMed
Google Scholar
Brereton, R. G., & Lloyd, G. R. (2010). Support vector machines for classification and regression. Analyst,
135(2), 230–267.
CAS
Article
PubMed
Google Scholar
Burton, L., Ivosev, G., Tate, S., Impey, G., Wingate, J., & Bonner, R. (2008). Instrumental and experimental effects in LC–MS-based metabolomics. Journal of Chromatography B,
871(2), 227–235.
CAS
Article
Google Scholar
Cairns, D. A., Thompson, D., Perkins, D. N., Stanley, A. J., Selby, P. J., & Banks, R. E. (2008). Proteomic profiling using mass spectrometry—does normalising by total ion current potentially mask some biological differences? Proteomics,
8(1), 21–27.
CAS
Article
PubMed
Google Scholar
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning,
20, 273–297.
Google Scholar
De Livera, A. M., Dias, D. A., De Souza, D., Rupasinghe, T., Pyke, J., Tull, D., et al. (2012). Normalizing and integrating metabolomics data. Analytical Chemistry,
84(24), 10768–10776.
Article
PubMed
Google Scholar
De Livera, A. M., Sysi-Aho, M., Jacob, L., Gagnon-Bartsch, J. A., Castillo, S., Simpson, J. A., et al. (2015). Statistical methods for handling unwanted variation in metabolomics data. Analytical Chemistry,
87(7), 3606–3615.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols,
6(7), 1060–1083.
CAS
Article
PubMed
Google Scholar
Dunn, W. B., Wilson, I. D., Nicholls, A. W., & Broadhurst, D. (2012). The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis,
4(18), 2249–2264.
CAS
Article
PubMed
Google Scholar
Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M., & Milgram, E. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry,
81(16), 6656–6667.
CAS
Article
PubMed
Google Scholar
FDA. (2013). Guidance for industry, bioanalytical method validation. Food and Drug Administration, Centre for Drug Valuation and Research (CDER).
Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology,
48(1–2), 155–171.
CAS
Article
PubMed
Google Scholar
Fujarewicz, K., Jarzab, M., Eszlinger, M., Krohn, K., Paschke, R., Oczko-Wojciechowska, M., et al. (2007). A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping. Endocrine-Related Cancer,
14(3), 809–826.
CAS
Article
PubMed
PubMed Central
Google Scholar
Griffin, J. L., Atherton, H., Shockcor, J., & Atzori, L. (2011). Metabolomics as a tool for cardiac research. Nature Reviews Cardiology,
8(11), 630–643.
CAS
Article
PubMed
Google Scholar
Guan, W., Zhou, M., Hampton, C. Y., Benigno, B. B., Walker, L. D., Gray, A., et al. (2009). Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines. BMC Bioinformatics,
10, 259.
Article
PubMed
PubMed Central
Google Scholar
Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A., & Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics,
18(Suppl 1), 96–104.
Article
Google Scholar
Kamleh, M. A., Ebbels, T. M. D., Spagou, K., Masson, P., & Want, E. J. (2012). Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies. Analytical Chemistry,
84(6), 2670–2677.
CAS
Article
PubMed
Google Scholar
Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry,
84(1), 283–289.
CAS
Article
PubMed
PubMed Central
Google Scholar
Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics,
11(10), 733–739.
CAS
Article
PubMed
Google Scholar
Long, J. Z., Cisar, J. S., Milliken, D., Niessen, S., Wang, C., Trauger, S. A., et al. (2011). Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids. Nature Chemical Biology,
7(11), 763–765.
CAS
Article
PubMed
PubMed Central
Google Scholar
Luan, H. M., Liu, L. F., Meng, N., Tang, Z., Chua, K. K., Chen, L. L., et al. (2015). LC MS-based urinary metabolite signatures in idiopathic Parkinson’s disease. Journal of Proteome Research,
14(1), 467–478.
CAS
Article
PubMed
Google Scholar
Lv, H. T., Palacios, G., Hartil, K., & Kurland, I. J. (2011). Advantages of tandem LC–MS for the rapid assessment of tissue-specific metabolic complexity using a pentafluorophenylpropyl stationary phase. Journal of Proteome Research,
10(4), 2104–2112.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mapstone, M., Cheema, A. K., Fiandaca, M. S., Zhong, X. G., Mhyre, T. R., MacArthur, L. H., et al. (2014). Plasma phospholipids identify antecedent memory impairment in older adults. Nature Medicine,
20(4), 415.
CAS
Article
PubMed
Google Scholar
Mayers, J. R., Wu, C., Clish, C. B., Kraft, P., Torrence, M. E., Fiske, B. P., et al. (2014). Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nature Medicine,
20(10), 1193–1198.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nicholson, J. K., & Lindon, J. C. (2008). Systems biology—metabonomics. Nature,
455(7216), 1054–1056.
CAS
Article
PubMed
Google Scholar
Patti, G. J., Yanes, O., Shriver, L. P., Courade, J. P., Tautenhahn, R., Manchester, M., et al. (2012a). Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nature Chemical Biology,
8(3), 232–234.
CAS
Article
PubMed
PubMed Central
Google Scholar
Patti, G. J., Yanes, O., & Siuzdak, G. (2012b). Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology,
13(4), 263–269.
CAS
Article
PubMed
PubMed Central
Google Scholar
R Development Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria. http://www.R-project.org. Accessed 18 June 2015.
Rabinowitz, J. D., & Silhavy, T. J. (2013). Metabolite turns master regulator. Nature,
500(7462), 283–284.
CAS
Article
PubMed
PubMed Central
Google Scholar
Redestig, H., Fukushima, A., Stenlund, H., Moritz, T., Arita, M., Saito, K., et al. (2009). Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data. Analytical Chemistry,
81(19), 7974–7980.
CAS
Article
PubMed
Google Scholar
Ren, S., Hinzman, A. A., Kang, E. L., Szczesniak, R. D., & Lu, L. J. (2015). Computational and statistical analysis of metabolomics data. Metabolomics,
11(6), 1492–1513.
CAS
Article
Google Scholar
Rosenberg, L. H., Franzen, B., Auer, G., Lehtio, J., & Forshed, J. (2010). Multivariate meta-analysis of proteomics data from human prostate and colon tumours. BMC Bioinformatics,
11, 468.
Article
PubMed
PubMed Central
Google Scholar
Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J. (2004). Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics,
20(15), 2447–2454.
CAS
Article
PubMed
Google Scholar
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry,
78(3), 779–787.
CAS
Article
PubMed
Google Scholar
Steinwart, I., & Christmann, A. (2008). Support vector machines. New York: Springer.
Google Scholar
Sysi-Aho, M., Katajamaa, M., Yetukuri, L., & Oresic, M. (2007). Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics,
8, 93.
Article
PubMed
PubMed Central
Google Scholar
Tautenhahn, R., Bottcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics,
9, 504.
Article
PubMed
PubMed Central
Google Scholar
van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics,
7, 142.
Article
PubMed
PubMed Central
Google Scholar
van der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research,
8(11), 5132–5141.
Article
PubMed
Google Scholar
Veselkov, K. A., Vingara, L. K., Masson, P., Robinette, S. L., Want, E., Li, J. V., et al. (2011). Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Analytical Chemistry,
83(15), 5864–5872.
CAS
Article
PubMed
Google Scholar
Wang, S. Y., Kuo, C. H., & Tseng, Y. F. J. (2013). Batch normalizer: a fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration methods. Analytical Chemistry,
85(2), 1037–1046.
CAS
Article
PubMed
Google Scholar
Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine,
17(4), 448–453.
Article
PubMed
PubMed Central
Google Scholar
Wang, W. X., Zhou, H. H., Lin, H., Roy, S., Shaler, T. A., Hill, L. R., et al. (2003). Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Analytical Chemistry,
75(18), 4818–4826.
CAS
Article
PubMed
Google Scholar
Weiss, R. H., & Kim, K. M. (2012). Metabolomics in the study of kidney diseases. Nature Reviews Nephrology,
8(1), 22–33.
CAS
Article
Google Scholar