Skip to main content

Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive

An Erratum to this article was published on 17 February 2016

Abstract

Despite numerous research efforts to control tuberculosis, it is still regarded as a global pandemic. It is clear that the infectious agent responsible and its associated disease mechanisms remain poorly understood. Alternative research strategies are therefore urgently needed to better characterize active-TB, especially the adaptations of the host and microbe as they compete to survive. Using a GCxGC-TOFMS metabolomics approach, we identified new urinary TB metabolite markers induced by adaptations of the host metabolome and/or host-pathogen interactions. The most significant of these were the TB-induced changes resulting in abnormal host fatty acid and amino acid metabolism, in particular to tryptophan, phenylalanine and tyrosine, inducing a metabolite profile similar to that of patients suffering from phenylketonuria, mediated through changes to INF-γ and possibly insulin. This subsequently also explains some of the symptoms associated with TB and provides clues to better treatment approaches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams, S. H. (2011). Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Advances in Nutrition, 2, 445–456.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Alam, S., Khalil, S., Ayub, N., & Rashid, M. (2002). In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. International Journal of Agriculture and Biology., 4, 454–458.

    CAS  Google Scholar 

  3. Asp, L., Johansson, A. S., Mann, A., et al. (2011). Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts. Journal of Inflammation (London), 8, 25.

    CAS  Article  Google Scholar 

  4. Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. Chichester: Wiley.

    Book  Google Scholar 

  5. Cabrera, J., Reiter, R. J., Tan, D., et al. (2000). Melatonin reduces oxidative neurotoxicity due to quinolinic acid: In vitro and in vivo findings. Neuropharmacology, 39, 507–514.

    CAS  Article  PubMed  Google Scholar 

  6. Cansev, M., & Wurtman, R. (2007). Aromatic amino acids in the brain. Handbook of neurochemistry and molecular neurobiology (pp. 59–97). Berlin: Springer.

    Chapter  Google Scholar 

  7. Choi, A. M., Ryter, S. W., & Levine, B. (2013). Autophagy in human health and disease. New England Journal of Medicine, 368, 651–662.

    CAS  Article  PubMed  Google Scholar 

  8. De Carvalho, L. P. S., Fischer, S. M., Marrero, J., Nathan, C., Ehrt, S., & Rhee, K. Y. (2010). Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chemistry & Biology, 17, 1122–1131.

    Article  Google Scholar 

  9. De Villiers, L., & Loots, D. T. (2013). Using metabolomics for elucidating the mechanisms related to tuberculosis treatment failure. Current Metabolomics, 1, 306–317.

    Article  Google Scholar 

  10. Deretic, V., & Levine, B. (2009). Autophagy, immunity, and microbial adaptations. Cell Host & Microbe, 5, 527–549.

    CAS  Article  Google Scholar 

  11. Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. Journal of Cell Biology, 33, 437–449.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Dooley, K. E., & Chaisson, R. E. (2009). Tuberculosis and diabetes mellitus: Convergence of two epidemics. The Lancet Infectious Diseases, 9, 737–746.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Drapal, M., Perez-Fons, L., Wheeler, P. R., & Fraser, P. D. (2014). The application of metabolite profiling to Mycobacterium spp.: Determination of metabolite changes associated with growth. Journal of Microbiol Methods, 106, 23–32.

    CAS  Article  Google Scholar 

  14. Du Preez, I., & Loots, D. T. (2013). New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis, 93, 330–337.

    Article  PubMed  Google Scholar 

  15. Ellis, S., & Steyn, H. (2003). Practical significance (effect sizes) versus or in combination with statistical significance (p-values): Research note. Management Dynamics, 12, 51–53.

    Google Scholar 

  16. Eoh, H., Brown, A. C., Buetow, L., et al. (2007). Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase: Potential for drug development. Journal of Bacteriology, 189, 8922–8927.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Goletti, D., Petruccioli, E., Romagnoli, A., Piacentini, M., & Fimia, G. M. (2013). Autophagy in Mycobacterium tuberculosis infection: A passepartout to flush the intruder out? Cytokine & Growth Factor Reviews, 24, 335–343.

    CAS  Article  Google Scholar 

  18. Gutierrez, M. G., Master, S. S., Singh, S. B., Taylor, G. A., Colombo, M. I., & Deretic, V. (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 119, 753–766.

    CAS  Article  PubMed  Google Scholar 

  19. Heyes, M. P., Saito, K., & Markey, S. P. (1992). Human macrophages convert l-tryptophan into the neurotoxin quinolinic acid. Biochemical Journal, 283, 633–635.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Kairamkonda, V., Dalzell, M., Losty, P. D., & Davidson, C. (2003). Perforated duodenal ulcer disclosing medium chain acyl-CoA dehydrogenase deficiency. Archives of Disease in Childhood, 88, 88–89.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Kholodar, S. A., & Murkin, A. S. (2013). DXP reductoisomerase: Reaction of the substrate in pieces reveals a catalytic role for the nonreacting phosphodianion group. Biochemistry, 52, 2302–2308.

    CAS  Article  PubMed  Google Scholar 

  22. Long, N. H., Diwan, V. K., & Winkvist, A. (2002). Difference in symptoms suggesting pulmonary tuberculosis among men and women. Journal of Clinical Epidemiology, 55, 115–120.

    Article  PubMed  Google Scholar 

  23. Loots, D. T., Mienie, L. J., Bergh, J. J., der Schyf, Van, & Cornelis, J. (2004). Acetyl-L-carnitine prevents total body hydroxyl free radical and uric acid production induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the rat. Life Sciences, 75, 1243–1253.

    CAS  Article  PubMed  Google Scholar 

  24. Loots, D. T., Wiid, I. J., Page, B. J., Mienie, L. J., & Helden, P. D. (2005). Melatonin prevents the free radical and MADD metabolic profiles induced by antituberculosis drugs in an animal model. Journal of Pineal Research, 38, 100–106.

    CAS  Article  PubMed  Google Scholar 

  25. Lübbe, C., Van Pée, K., Salcher, O., & Lingens, F. (1983). The metabolism of tryptophan and 7-chlorotryptophan in Pseudomonas pyrrocinia and Pseudomonas aureofaciens. Hoppe-Seyler’s Zeitschrift für physiologische Chemie, 364, 447–454.

    Article  PubMed  Google Scholar 

  26. Mao, F., Chen, T., Zhao, Y., et al. (2011). Insulin resistance: A potential marker and risk factor for active tuberculosis? Medical Hypotheses, 77, 66–68.

    CAS  Article  PubMed  Google Scholar 

  27. McInnes, R. R., Kaufman, S., Warsh, J. J., et al. (1984). Biopterin synthesis defect: Treatment with L-dopa and 5-hydroxytryptophan compared with therapy with a tetrahydropterin. Journal of Clinical Investigation, 73, 458–469.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Mikusova, K., Mikus, M., Besra, G. S., Hancock, I., & Brennan, P. J. (1996). Biosynthesis of the linkage region of the mycobacterial cell wall. Journal of Biological Chemistry, 271, 7820–7828.

    CAS  Article  PubMed  Google Scholar 

  29. Mizushima, N. (2007). Autophagy: Process and function. Genes & Development, 21, 2861–2873.

    CAS  Article  Google Scholar 

  30. Niu, J., Pi, Z., Yue, H., Wang, Y., Yu, Q., & Liu, S. (2012). Effect of ginseng polysaccharide on the urinary excretion of type 2 diabetic rats studied by liquid chromatography–mass spectrometry. Journal of Chromatography B, 907, 7–12.

    CAS  Article  Google Scholar 

  31. Philips, J. A., & Ernst, J. D. (2012). Tuberculosis pathogenesis and immunity. Annual Review of Pathology: Mechanisms of Disease, 7, 353–384.

    CAS  Article  Google Scholar 

  32. Puri, D. (2006). Textbook of medical biochemistry: Clinical cases Chapter 13.2. Textbook of medical biochemistry (p. 376). New-Delhi: Elsevier.

    Google Scholar 

  33. Rhee, K. Y., Carvalho, De, Sorio, Luiz Pedro, Bryk, R., et al. (2011). Central carbon metabolism in Mycobacterium tuberculosis: An unexpected frontier. Trends in Microbiology, 19, 307–314.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Robitaille, L., Mamer, O. A., Miller, W. H, Jr, et al. (2009). Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism, Clinical and Experimental, 58, 263–269.

    CAS  Article  Google Scholar 

  35. Schoeman, J. C., Du Preez, I., & Loots, D. T. (2012). A comparison of four sputum pre-extraction preparation methods for identifying and characterising M. tuberculosis using GCxGC-TOFMS metabolomics. Journal of Microbiol Methods, 91, 301–311.

    CAS  Article  Google Scholar 

  36. Sherwin, C. P., & Kennard, K. S. (1919). Toxicity of phenylacetic acid. Journal of Biological Chemistry, 40, 259–264.

    CAS  Google Scholar 

  37. Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Singh, V., Jamwal, S., Jain, R., Verma, P., Gokhale, R., & Rao, K. V. (2012). Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host & Microbe, 12, 669–681.

    CAS  Article  Google Scholar 

  39. Singh, V. V., & Toskes, P. P. (2004). Small bowel bacterial overgrowth: Presentation, diagnosis, and treatment. Current Treatment Options in Gastroenterology, 7, 19–28.

    Article  PubMed  Google Scholar 

  40. Singhal, A., Jie, L., Kumar, P., et al. (2014). Metformin as adjunct antituberculosis therapy. Science Translational Medicine, 6, 263ra159.

    Article  PubMed  Google Scholar 

  41. Smuts, I., Der Westhuizen, Van, Francois, H., Louw, R., et al. (2013). Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach. Metabolomics, 9, 379–391.

    CAS  Article  Google Scholar 

  42. Suzuki, Y., Suda, T., Asada, K., et al. (2012). Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis. Clinical and Vaccine Immunology, 19, 436–442.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Tai, E., Tan, M., Stevens, R., et al. (2010). Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia, 53, 757–767.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Velagapudi, V. R., Hezaveh, R., Reigstad, C. S., et al. (2010). The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research, 51, 1101–1112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Venter, L., Lindeque, Z., Van Rensburg, P. J., Van Der Westhuizen, F., Smuts, I., & Louw, R. (2015). Untargeted urine metabolomics reveals a biosignature for muscle respiratory chain deficiencies. Metabolomics, 11, 111–121.

    CAS  Article  Google Scholar 

  46. Wang, S., Kuo, C., & Tseng, Y. J. (2012). Batch normalizer: A fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration methods. Analytical Chemistry, 85, 1037–1046.

    Article  PubMed  Google Scholar 

  47. Warner, D. F. (2014). Mycobacterium tuberculosis metabolism. Cold Spring Harbor Perspectives in Medicine,. doi:10.1101/cshperspect.a021121.

    PubMed  Google Scholar 

  48. World Health Organization. (2014). Tuberculosis: WHO global tuberculosis report 2014, 1–2.

Download references

Author contribution

Both authors contributed equally to this work: DTL conceptionalized the study design, and LDV did the data acquisition/analysis. LDV worked on data interpretation, and drafted the article, and DTL revised it critically for important intellectual content. Both authors approved the final version to be submitted.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Du Toit Loots.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest, and that this manuscript, and the work described therein, is unpublished and has not been submitted for publication elsewhere.

Ethical approval

Ethical approval for this investigation, carried out according to the Declaration of Helsinki and International Conference of Harmonization guidelines, was obtained from the Ethics Committee of the North-West University, South Africa (Number NWU-00127-11-A1). All participants gave written informed consent for collection of urine and its use as described.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 170 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luier, L., Loots, D.T. Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive. Metabolomics 12, 40 (2016). https://doi.org/10.1007/s11306-016-0969-x

Download citation

Keywords

  • Tuberculosis
  • Urinary metabolomics
  • Metabolite markers
  • Host-pathogen
  • Adaptations
  • Interactions