Advertisement

Metabolomics

, 12:46 | Cite as

Metabolic and transcriptomic profiling of Streptococcus intermedius during aerobic and anaerobic growth

  • Fan Fei
  • Michelle L. Mendonca
  • Brian E. McCarry
  • Dawn M. E. Bowdish
  • Michael G. Surette
Original Article

Abstract

Streptococcus intermedius, S. constellatus, and S. anginosus comprise the Streptococcus Milleri/Anginosus group (SMG). They are facultative anaerobic bacteria that asymptomatically colonize the upper respiratory, gastrointestinal and urogenital tracts. They are also common pathogens in pyogenic invasive infections, as well as pulmonary and urinary tract infections. Most SMG infections are polymicrobial and associated with co-infecting obligate anaerobic bacteria. To better understand the effect of oxygen on the growth and physiology of these organisms, we compared the global metabolomic and transcriptomic profiles of S. intermedius strain B196 under aerobic and anaerobic conditions. The largest transcriptional changes were associated with induction of oxidative stress response genes under aerobic conditions. Modest changes in expression of genes associated with primary metabolism were observed under the two conditions. Intracellular and extracellular metabolites were measured using HILIC–LCMS. Differences in the abundance of specific metabolites were correlated with observed transcription changes in genes associated with their metabolism, implying that metabolism is primarily regulated at the transcriptional level. Rather than a large shift in primary metabolism under anaerobic conditions our results suggest a modest tuning of metabolism to support the accelerated growth rate of S. intermedius strain B196 in the absence of oxygen. For example, under anaerobic conditions, purine metabolism, pyrimidine de novo synthesis and pyrimidine salvage pathways were up-regulated at metabolic and transcriptional levels. This study provides a better understanding of differences between S. intermedius anaerobic and aerobic metabolism. The results reflect the organism’s predilection for anaerobic growth consistent with its pathogenic association with anaerobes in polymicrobial infections.

Keywords

Streptococcus intermedius Transcriptomics Metabolomics Aerobic Anaerobic Streptococcus Milleri/Anginosus group 

Notes

Acknowledgments

This work is dedicated to the late Prof. Brian McCarry (1946–2013). FF was supported by an Ontario Graduate Scholarship. MGS and DMEB are supported by the CIHR and hold Canada Research Chairs. Work in the Bowdish laboratory is supported by the McMaster Immunology Research Centre (MIRC) and work in the Bowdish and Surette labs are supported by the M.G. DeGroote Institute for Infectious Disease Research (IIDR). The authors would like to thank the Center for Microbial Chemical Biology (CMCB) at McMaster for access to the LC–MS. This study was funded by a grant from the Canadian Institutes of Health Research to DMEB and MGS (Grant # 108032).

Compliance with ethical standards

Conflict of interest

All authors declared no conflict of interest.

Human and animal informed consent

This article does not contain any studies with human participants or animals performed by any of the author.

Supplementary material

11306_2016_966_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1982 kb)
11306_2016_966_MOESM2_ESM.xlsx (190 kb)
Supplementary material 2 (XLSX 189 kb)
11306_2016_966_MOESM3_ESM.xlsx (924 kb)
Supplementary material 3 (XLSX 923 kb)
11306_2016_966_MOESM4_ESM.xlsx (2.6 mb)
Supplementary material 4 (XLSX 2701 kb)
11306_2016_966_MOESM5_ESM.xlsx (16 kb)
Supplementary material 5 (XLSX 15 kb)

References

  1. Ahn, S.-J., Ahn, S.-J., Browngardt, C. M., & Burne, R. A. (2009). Changes in biochemical and phenotypic properties of Streptococcus mutans during growth with aeration. Applied and Environment Microbiology, 75(8), 2517–2527.CrossRefGoogle Scholar
  2. Ahn, S.-J., Wen, Z. T., & Burne, R. A. (2007). Effects of oxygen on virulence traits of Streptococcus mutans. Journal of Bacteriology, 189(23), 8519–8527. doi: 10.1128/JB.01180-07.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asam, D., & Spellerberg, B. (2014). Molecular pathogenicity of Streptococcus anginosus. Mol Oral Microbiol, 29(4), 145–155.CrossRefPubMedGoogle Scholar
  4. Bassit, N., Boquien, C.-Y., Picque, D., & Georges, C. (1993). Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. Applied and Environment Microbiology, 59(6), 1893–1897.Google Scholar
  5. Brittan, J. L., Buckeridge, T. J., Finn, A., Kadioglu, A., & Jenkinson, H. F. (2012). Pneumococcal neuraminidase A: An essential upper airway colonization factor for Streptococcus pneumoniae. Molecular Oral Microbiology, 27(4), 270–283.CrossRefPubMedGoogle Scholar
  6. Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2(4), 171–196.CrossRefGoogle Scholar
  7. Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., et al. (2014). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research, 42(D1), D459–D471.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Choi, K.-H., Heath, R. J., & Rock, C. O. (2000). β-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. Journal of Bacteriology, 182(2), 365–370.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Coman, G., Pânzaru, C., Diculencu, D., Gotia, D., Cârlan, M., Dahorea, C., & Butnaru, F. (1995). Pyogenic infections with different locations caused by Streptococcus anginosus alone or in association with anaerobic bacteria. Revista Medico-Chirurgicala A Societatii de Medici si Naturalisti din Iasi, 99(3–4), 215–219.PubMedGoogle Scholar
  10. Cotter, P. D., & Hill, C. (2003). Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews, 67(3), 429–453.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Creek, D. J., Dunn, W. B., Fiehn, O., Griffin, J. L., Hall, R. D., Lei, Z., et al. (2014). Metabolite identification: Are you sure? And how do your peers gauge your confidence? Metabolomics, 10(3), 350–353.CrossRefGoogle Scholar
  12. Crow, V. L., & Pritchard, G. G. (1977). Fructose 1,6-diphosphate-activated l-lactate dehydrogenase from Streptococcus lactis: Kinetic properties and factors affecting activation. Journal of Bacteriology, 131(1), 82–91.PubMedPubMedCentralGoogle Scholar
  13. Cusumano, Z. T., & Caparon, M. G. (2015). Citrulline protects Streptococcus pyogenes from acid stress using the arginine deiminase pathway and the F1F0-ATPase. Journal of Bacteriology, 197(7), 1288–1296.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cusumano, Z. T., Watson, M. E., & Caparon, M. G. (2014). Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity. Infection and Immunity, 82(1), 233–242.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Derré-Bobillot, A., Cortes-Perez, N. G., Yamamoto, Y., Kharrat, P., Couvé, E., Da Cunha, V., et al. (2013). Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Molecular Microbiology, 89(3), 518–531.CrossRefPubMedGoogle Scholar
  16. Fei, F., Bowdish, D. M. E., & McCarry, B. E. (2014). Comprehensive and simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC-TOF-MS. Analytical and Bioanalytical Chemistry, 406(15), 3723–3733.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Filkins, L. M., Hampton, T. H., Gifford, A. H., Gross, M. J., Hogan, D. A., Sogin, M. L., et al. (2012). Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. Journal of Bacteriology, 194(17), 4709–4717.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fozo, E. M., & Quivey, R. G. (2004). The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. Journal of Bacteriology, 186(13), 4152–4158.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gossling, J. (1988). Occurrence and pathogenicity of the Streptococcus milleri group. Reviews of Infectious Diseases, 10(2), 257–285.CrossRefPubMedGoogle Scholar
  20. Gruening, P., Fulde, M., Valentin-Weigand, P., & Goethe, R. (2006). Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. Journal of Bacteriology, 188(2), 361–369.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gupta, R., Yang, J., Dong, Y., Swiatlo, E., Zhang, J.-R., Metzger, D. W., & Bai, G. (2013). Deletion of arcD in Streptococcus pneumoniae D39 impairs its capsule and attenuates virulence. Infection and Immunity, 81(10), 3903–3911.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Higuchi, M. (1984). The effect of oxygen on the growth and mannitol fermentation of Streptococcus mutans. Journal of General Microbiology, 130(7), 1819–1826.PubMedGoogle Scholar
  23. Higuchi, M., Yamamoto, Y., & Kamio, Y. (2000). Molecular biology of oxygen tolerance in lactic acid bacteria: Functions of NADH oxidases and Dpr in oxidative stress. Journal of Bioscience and Bioengineering, 90(5), 484–493.CrossRefPubMedGoogle Scholar
  24. Hirai, T., Kimura, S., & Mori, N. (2005). Head and neck infections caused by Streptococcus milleri group: An analysis of 17 cases. Auris, Nasus, Larynx, 32(1), 55–58.CrossRefPubMedGoogle Scholar
  25. Hocken, D. B., & Dussek, J. E. (1985). Streptococcus milleri as a cause of pleural empyema. Thorax, 40(8), 626–628.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hytönen, J., Haataja, S., & Finne, J. (2006). Use of flow cytometry for the adhesion analysis of Streptococcus pyogenes mutant strains to epithelial cells: Investigation of the possible role of surface pullulanase and cysteine protease, and the transcriptional regulator Rgg. BMC Microbiology, 6(1), 18.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nature Reviews Microbiology, 11(7), 443–454.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jakubovics, N. S., Smith, A. W., & Jenkinson, H. F. (2002). Oxidative stress tolerance is manganese (Mn(2+)) regulated in Streptococcus gordonii. Microbiology, 148(Pt10), 3255–3263.CrossRefPubMedGoogle Scholar
  29. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T.R., & Neumann, S. (2015). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289.CrossRefGoogle Scholar
  30. Laupland, K. B., Ross, T., Church, D. L., & Gregson, D. B. (2006). Population-based surveillance of invasive pyogenic streptococcal infection in a large Canadian region. Clinical Microbiology & Infection, 12(3), 224–230.CrossRefGoogle Scholar
  31. Lee, E. Y., Khatwa, U., McAdam, A. J., Bastos, M. Almeida, Mahmood, S. A., Ervoes, J. P., & Boiselle, P. M. (2010). Streptococcus milleri group pleuropulmonary infection in children: Computed tomographic findings and clinical features. Journal of Computer Assisted Tomography, 34(6), 927–932.CrossRefPubMedGoogle Scholar
  32. Marquis, R. E., Bender, G. R., Murray, D. R., & Wong, A. (1987). Arginine deiminase system and bacterial adaptation to acid environments. Applied and Environment Microbiology, 53(1), 198–200.Google Scholar
  33. Marraffini, L. A., & Sontheimer, E. J. (2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews Genetics, 11(3), 181–190.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Marrakchi, H., Zhang, Y.-M., & Rock, C. O. (2002). Mechanistic diversity and regulation of Type II fatty acid synthesis. Biochemical Society Transactions, 30(part 6), 1050–1055.CrossRefPubMedGoogle Scholar
  35. Midon, M., Schäfer, P., Pingoud, A., Ghosh, M., Moon, A. F., Cuneo, M. J., et al. (2011). Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae. Nucleic Acids Research, 39(2), 623–634.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Olson, A. B., Kent, H., Sibley, C. D., Grinwis, M. E., Mabon, P., Ouellette, C., et al. (2013). Phylogenetic relationship and virulence inference of Streptococcus anginosus group : Curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics, 14, 895.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Parkhomchuk, D., Borodina, T., Amstislavskiy, V., Banaru, M., Hallen, L., Krobitsch, S., et al. (2009). Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Research, 37(18), e123.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Parkins, M. D., Sibley, C. D., Surette, M. G., & Rabin, H. R. (2008). The Streptococcus milleri group—an unrecognized cause of disease in cystic fibrosis: A case series and literature review. Pediatric Pulmonology, 43(5), 490–497.CrossRefPubMedGoogle Scholar
  39. Portela, C. A. F., Smart, K. F., Tumanov, S., Cook, G. M., & Villas-Bôas, S. G. (2014). Global metabolic response of Enterococcus faecalis to oxygen. Journal of Bacteriology, 196(11), 2012–2022.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Prüb, B. M., Nelms, J. M., Park, C., & Wolfe, A. J. (1994). Mutations in NADH: Ubiquinone oxidoreductase. Journal of Bacteriology, 176(8), 2143–2150.Google Scholar
  41. Ripley, R. T., Cothren, C. C., Moore, E. E., Long, J., Johnson, J. L., & Haenel, J. B. (2006). Streptococcus milleri infections of the pleural space: Operative management predominates. American Journal of Surgery, 192(6), 817–821.CrossRefPubMedGoogle Scholar
  42. Rogers, A. H., Zilm, P. S., & Gully, N. J. (1987). Influence of arginine on the coexistence of Streptococcus mutans and S. milleri in glucose-limited mixed continuous culture. Microbial Ecology, 14(3), 193–202.CrossRefPubMedGoogle Scholar
  43. Ruoff, K. L. (1988). Streptococcus anginosus (“Streptococcus milleri”): the unrecognized pathogen. Clinical Microbiology Reviews, 1(1), 102–108.PubMedPubMedCentralGoogle Scholar
  44. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 39(21), 9275–9282.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Serbanescu, M. A., Cordova, M., Krastel, K., Flick, R., Beloglazova, N., Latos, A., et al. (2015). Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology. Journal of Bacteriology, 197(4), 749–761.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sezonov, G., Joseleau-Petit, D., & D’Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of Bacteriology, 189(23), 8746–8749.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shinzato, T., & Saito, A. (1994). A mechanism of pathogenicity of “Streptococcus milleri group” in pulmonary infection: Synergy with an anaerobe. Journal of Medical Microbiology, 40, 118–123.CrossRefPubMedGoogle Scholar
  48. Shinzato, T., & Saito, A. (1995). The Streptococcus milleri group as a cause of pulmonary infections. Clinical Infectious Diseases, 21(Supplement 3), S238–S243.CrossRefPubMedGoogle Scholar
  49. Sibley, C. D., Church, D. L., Surette, M. G., Dowd, S. E., & Parkins, M. D. (2012). Pyrosequencing reveals the complex polymicrobial nature of invasive pyogenic infections: Microbial constituents of empyema, liver abscess, and intracerebral abscess. European Journal of Clinical Microbiology and Infectious Diseases, 31(10), 2679–2691.CrossRefPubMedGoogle Scholar
  50. Sibley, C. D., Parkins, M. D., Rabin, H. R., Duan, K., Norgaard, J. C., & Surette, M. G. (2008). A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15070–15075.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Siegman-Igra, Y., Azmon, Y., & Schwartz, D. (2012). Milleri group streptococcus—a stepchild in the viridans family. European Journal of Clinical Microbiology and Infectious Diseases, 31(9), 2453–2459.CrossRefPubMedGoogle Scholar
  52. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.CrossRefPubMedGoogle Scholar
  53. Stadelmann, B., Hanevik, K., Andersson, M. K., Bruserud, O., & Svärd, S. G. (2013). The role of arginine and arginine-metabolizing enzymes during Giardia—host cell interactions in vitro. BMC Microbiology, 13, 256.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics, 3(3), 211–221.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., et al. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562–578.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Trotter, E. W., Rolfe, M. D., Hounslow, A. M., Craven, C. J., Williamson, M. P., Sanguinetti, G., et al. (2011). Reprogramming of Escherichia coli K-12 metabolism during the initial phase of transition from an anaerobic to a micro-aerobic environment. PLoS One, 6(9), e25501.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Van der Auwera, P. (1985). Clinical significance of Streptococcus milleri. European Journal of Clinical Microbiology, 4(4), 386–390.CrossRefPubMedGoogle Scholar
  58. Whiley, R. A. A., Beighton, D., Winstanley, T. G. G., Fraser, H. Y. Y., & Hardie, J. M. M. (1992). Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. Journal of Clinical Microbiology, 30(1), 243–244.PubMedPubMedCentralGoogle Scholar
  59. Wong, C. A., Donald, F., & Macfarlane, J. T. (1995). Streptococcus milleri pulmonary disease: A review and clinical description of 25 patients. Thorax, 50(10), 1093–1096.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zheng, L., T’Kind, R., Decuypere, S., von Freyend, S. J., Coombs, G. H., & Watson, D. G. (2010). Profiling of lipids in Leishmania donovani using hydrophilic interaction chromatography in combination with Fourier transform mass spectrometry. Rapid Communications in Mass Spectrometry, 24, 2074–2082.CrossRefPubMedGoogle Scholar
  62. Zúñiga, M., Pérez, G., & González-Candelas, F. (2002). Evolution of arginine deiminase (ADI) pathway genes. Molecular Phylogenetics and Evolution, 25(3), 429–444.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada
  2. 2.Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonCanada
  3. 3.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
  4. 4.Department of Medicine, Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations