Skip to main content
Log in

High resolution mass spectrometry for structural identification of metabolites in metabolomics

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

High resolution mass spectrometry (HRMS) is increasingly used to produce metabolomics data. Thanks to its high mass resolution and mass measurement accuracy, it is also very useful for metabolite identification. Nevertheless, a rigorous methodology is required. This manuscript describes different steps involved in the structural elucidation of metabolites and demonstrates the utility of HRMS for such purpose. After a brief overview of HRMS performances in terms of mass measurement accuracy, peak resolution, isotopic clusters/patterns and the instrumentation used, the first section is devoted to the data processing generally performed to reduce the data set size. Based on the mass accuracy measurements, different post-acquisition data processing procedures have been developed for complex mixture analysis and can be used in metabolomics. The second section describes protocols used to process putative metabolite annotations or identifications with HRMS data, based on elemental composition determined from accurately measured m/z value and mass spectral databases. Non-classical approaches are also proposed for tentative structure elucidation of unknown metabolites. Finally, limitations of the proposed workflow for metabolite structure elucidation are discussed and possible improvements are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, F., Pon, A., Wilson, M., Greiner, R., & Wishart, D. (2014). CFM-ID: A web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Research, 42, W94–W99.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alves, S., Rathahao-Paris, E., & Tabet, J. C. (2013). Potential of Fourier transform mass spectrometry for high throughput metabolomics analysis. In D. Rolin (Ed.), Advances in botanical research: Metabolomics coming of age with its technological diversity (Vol. 67, pp. 219–302). Amsterdam: Elsevier Ltd.

    Chapter  Google Scholar 

  • Böcker, S., & Rasche, F. (2008). Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics, 24, i49–i55.

    Article  PubMed  Google Scholar 

  • Boudah, S., Olivier, M. F., Aros-Calt, S., Oliveira, L., Fenaille, F., Tabet, J.-C., & Junot, C. (2014). Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. Journal of Chromatography B, 966, 34–47.

    Article  CAS  Google Scholar 

  • Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Review, 24, 223–231.

    Article  CAS  Google Scholar 

  • Cao, M., Fraser, K., & Rasmussen, S. (2013). Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification. Metabolites, 3, 1036–1050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu, F. L., Pirastru, L., Popovic, R., & Sleno, L. (2011). Carotenogenesis Up-regulation in Scenedesmus sp. using a targeted metabolomics approach by liquid chromatography - high resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 59, 3004–3013.

    Article  PubMed  CAS  Google Scholar 

  • de Hoffmann, E., & Stroobant, V. (2002). Mass spectrometry: Principles and applications (3rd ed.). Chichester: Wiley.

    Google Scholar 

  • Dong, L., Shion, H., Davis, R. G., Terry-Penak, B., Castro-Perez, J., & van Breemen, R. B. (2010). Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Analytical Chemistry, 82, 9014–9021.

    Article  PubMed  CAS  Google Scholar 

  • Du, F., Ruan, Q., Zhu, M., & Xing, J. (2013). Detection and characterization of ticlopidine conjugates in rat bile using high-resolution mass spectrometry: Applications of various data acquisition and processing tools. Journal of Mass Spectrometry, 48, 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., Erban, A., Weber, R. J. M., Creek, D. J., Brown, M., Breitling, R., et al. (2012). Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 9(S1), 44–66.

    Article  CAS  Google Scholar 

  • Erve, J. C. L., Gu, M., Wang, Y., DeMaio, W., & Talaat, R. E. (2009). Spectral accuracy of molecular ions in an ltq/orbitrap mass spectrometer and implications for elemental composition determination. Journal of the American Society for Mass Spectrometry, 20, 2058–2069.

    Article  PubMed  CAS  Google Scholar 

  • Geiger, T., Cox, J., & Mann, M. (2010). Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Molecular and Cellular Proteomics, 9(10), 2252–2261.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gerlich, M., & Neumann, S. (2013). MetFusion: Integration of compound identification strategies. Journal of Mass Spectrometry, 48, 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Gillet, L. C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., et al. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11(6), O111–016717. 1–17.

    Article  CAS  Google Scholar 

  • Gougeon, R. D., Lucio, M., Frommberger, M., Peyron, D., Chassagne, D., Alexandre, H., et al. (2009). The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. PNAS, 106(23), 9174–9179.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gowda, H., Ivanisevic, J., Johnson, C. H., Kurczy, M. E., Benton, H. P., Rinehart, D., et al. (2014). Interactive XCMS online: Simplifying advanced metabolomic data processing and subsequent statistical analyses. Analytical Chemistry, 86(14), 6931–6939.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grange, A., Genicola, F., & Sovocool, G. W. (2002). Utility of three types of mass spectrometers for determining elemental compositions of ions formed from chromatographically separated compounds. Rapid Communications in Mass Spectrometry, 16, 2356–2369.

    Article  PubMed  CAS  Google Scholar 

  • Grange, A. H., Zumwalt, M. C., & Sovocool, G. W. (2006). Determination of ion and neutral loss compositions and deconvolution of product ion mass spectra using an orthogonal acceleration time-of-flight mass spectrometer and an ion correlation program. Rapid Communications in Mass Spectrometry, 20, 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Hall, M. P., Ashrafi, S., Obegi, I., Petesch, R., Peterson, J. N., & Schneider, L. V. (2003). ‘Mass defect’ tags for biomolecular mass spectrometry. Journal of Mass Spectrometry, 38, 809–816.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 4, 128–140.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hashimoto, S., Zushi, Y., Fushimi, A., Takazawa, Y., Tanabe, K., & Shibata, Y. (2013). Selective extraction of halogenated compounds from data measured by comprehensive multidimensional gas chromatography/high resolution time-of-flight mass spectrometry for non-target analysis of environmental and biological samples. Journal of Chromatography A, 1282, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • He, H., Conrad, C. A., Nilsson, C. L., Ji, Y., Schaub, T. M., Marshall, A. G., & Emmett, M. R. (2007). Method for lipidomic analysis: p53 expression modulation of sulfatide, ganglioside, and phospholipid composition of U87 MG glioblastoma cells. Analytical Chemistry, 79(22), 8423–8430.

    Article  PubMed  CAS  Google Scholar 

  • Hopley, C., Bristow, T., Lubben, A., Simpson, A., Bull, E., Klagkou, K., et al. (2008). Towards a universal product ion mass spectral library-reproducibility of product ion spectra across eleven different mass spectrometers. Rapid Communications in Mass Spectrometry, 22, 1779–1786.

    Article  PubMed  CAS  Google Scholar 

  • Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Chen, Y., Cho, K., Nikolskiy, I., Crawford, P. A., & Patti, G. J. (2014). X13CMS: Global tracking of isotopic labels in untargeted metabolomics. Analytical Biochemistry, 86, 1632–1639.

    CAS  Google Scholar 

  • Hufsky, F., Scheubert, K., & Böcker, S. (2014). New kids on the block: Novel informatics methods for natural product discovery. Natural Products Reports, 31, 807–817.

    Article  CAS  Google Scholar 

  • Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., Marshall, A. G., & Qian, K. (2001). Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra. Analytical Chemistry, 73(19), 4676–4681.

    Article  PubMed  CAS  Google Scholar 

  • Ichou, F., Schwarzenberg, A., Lesage, D., Alves, S., Junot, C., Machuron-Mandard, X., & Tabet, J. C. (2014). Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes. Journal of Mass Spectrometry, 49(6), 498–508.

    Article  PubMed  CAS  Google Scholar 

  • Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., et al. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54(5), 949–962.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jobst, K. J., Shen, L., Reiner, E. J., Taguchi, V. Y., Helm, P. A., McCrindle, R., & Backus, S. (2013). The use of mass defect plots for the identification of (novel) halogenated contaminants in the environment. Analytical Biochemistry, 405, 3289–3297.

    CAS  Google Scholar 

  • Junot, C., Fenaille, F., Colsch, B., & Bécher, F. (2014). High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrometry Reviews, 33(6), 471–500.

    Article  PubMed  CAS  Google Scholar 

  • Junot, C., Madalinski, G., Tabet, J. C., & Ezan, E. (2010). Fourier transform mass spectrometry for metabolome analysis. Analyst, 135, 2203–2219.

    Article  PubMed  CAS  Google Scholar 

  • Kangas, L. J., Metz, T. O., Isaac, G., Schrom, B. T., Ginovska-Pangovska, B., Wang, L., et al. (2012). In silico identification software (ISIS): A machine learning approach to tandem mass spectral identification of lipids. Bioinformatics, 28(13), 1705–1713.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636.

    Article  PubMed  CAS  Google Scholar 

  • Katajamaa, M., & Oresic, M. (2007). Data processing for mass spectrometry-based metabolomics. Journal of Chromatography A, 1158, 318–328.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, E. (1963). A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Analytical Chemistry, 35(13), 2146–2154.

    Article  CAS  Google Scholar 

  • Kessler, N., Walter, F., Persicke, M., Albaum, S. P., Kalinowski, J., Goesmann, A., et al. (2014). ALLocator: An interactive web platform for the analysis of metabolomic LC-ESI-MS datasets, enabling semi-automated, user-revised compound annotation and mass isotopomer ratio analysis. PLoS ONE, 9(11), e113909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, S., Kramer, R. W., & Hatcher, P. G. (2003). Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Analytical Chemistry, 75, 5336–5344.

    Article  PubMed  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2006). Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7, 234–244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105–125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2010). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical reviews, 2, 23–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kind, T., Liu, K. H., Lee, D. Y., DeFelice, B., Meissen, J. K., & Fiehn, O. (2013). LipidBlast in silico tandem mass spectrometry database for lipid identification. Nature Methods, 10(8), 755–758.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kind, T., Scholz, M., & Fiehn, O. (2009). How large is the metabolome? A critical analysis of data exchange practices in chemistry. PlosOne, 4(5), e5440.

    Article  CAS  Google Scholar 

  • Koch, B. P., Dittmar, T., Witt, M., & Kattner, G. (2007). Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Analytical Chemistry, 79, 1758–1763.

    Article  PubMed  CAS  Google Scholar 

  • Konda, C., Bendiak, B., & Xia, Y. (2012). Differentiation of the stereochemistry and anomeric configuration for 1-3 linked disaccharides via tandem mass spectrometry and 18O-labeling. Journal of the American Society for Mass Spectrometry, 23, 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm metabolome database. Bioinformatics, 21(8), 1635–1638.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, R. W., Kujawinski, E. B., & Hatcher, P. G. (2004). Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry. Environmental Science and Technology, 38(12), 3387–3395.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., et al. (2014). DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Research, 42, D1091–D1097.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • LeBlanc, A., Shiao, T. C., Roy, R., & Sleno, L. (2010). Improved detection of reactive metabolites with a bromine-containing glutathione analog using mass defect and isotope pattern matching. Rapid Communications in Mass Spectrometry, 24, 1241–1250.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., Xiao, W., Dai, C., Xie, L., Ding, G., Wang, G., et al. (2011). Structural identification of the metabolites for strictosamide in rats bile by an ion trap-TOF mass spectrometer and mass defect filter technique. Journal of Chromatography B, 879, 1819–1822.

    Article  CAS  Google Scholar 

  • Liger-Belair, G., Cilindre, C., Gougeon, R. D., Lucio, M., Gebefügi, I., Jeandet, P., & Schmitt-Kopplin, P. (2009). Unraveling different chemical fingerprints between a champagne wine and its aerosols. PNAS, 106(39), 16545–16549.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lommen, A. (2009). MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry, 81(8), 3079–3086.

    Article  PubMed  CAS  Google Scholar 

  • López, S. H., Ulaszewska, M. M., Hernando, M. D., Bueno, M. J., Gómez, M. J., & Fernández-Alba, A. R. (2014). Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS. Environmental Science and Pollution Research International, 21, 12583–12604.

    Article  PubMed  CAS  Google Scholar 

  • Madalinski, G., Godat, E., Alves, S., Lesage, D., Genin, E., Levi, P., et al. (2008). Direct introduction of biological samples into a LTQ-Orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. Analytical Chemistry, 80(9), 3291–3303.

    Article  PubMed  CAS  Google Scholar 

  • Makarov, A., Denisov, E., Lange, O., & Horning, S. (2006). Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. Journal of the American Society for Mass Spectrometry, 17(7), 977–982.

    Article  PubMed  CAS  Google Scholar 

  • March Raymond, E. (2009). Quadrupole ion traps. Mass Spectrometry Reviews, 28(6), 961–989.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, A. G., Hendrickson, C. L., & Jackson, G. S. (1998). Fourier transform ion cyclotron mass spectrometry: A primer. Mass Spectrometry Reviews, 17(1), 1–35.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, A. G., & Rodgers, R. P. (2004). Petroleomics: The next grand challenge for chemical analysis. Accounts of Chemical Research, 37(1), 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Miura, D., Tsuji, Y., Takahashi, K., Wariishi, H., & Saito, K. (2010). A strategy for the determination of the elemental composition by Fourier transform ion cyclotron resonance mass spectrometry based on isotopic peak ratios. Analytical Chemistry, 82, 5887–5891.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, S., & Böcker, S. (2010). Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Analytical and Bioanalytical Chemistry, 398, 2779–2788.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka, T., Kasama, T., Kinumi, T., Makabe, H., Matsuda, F., Miura, D., et al. (2014). Winners of CASMI 2013: Automated tools and challenge data. Mass Spectrometry (Tokyo), 3, 1–13.

    Google Scholar 

  • Ohta, D., Kanaya, S., & Suzuki, H. (2010). Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Current Opinion in Biotechnology, 21, 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Paglia, G., Williams, J. P., Menikarachchi, L., Thompson, J. W., Tyldesley-Worster, R., Halldorsson, S., et al. (2014). Ion mobility derived collision cross sections to support metabolomics applications. Analytical Chemistry, 86, 3985–3993.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paris, A., & Rao, D. (1989). Biosynthesis of estradiol-17beta fatty acyl esters by microsomes derived from bovine liver and adrenals. Journal of Steroid Biochemistry, 33(3), 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Peironcely, J. E., Rojas-Cherto, M., Tas, A., Vreeken, R., Reijmers, T., Coulier, L., & Hankemeier, T. (2013). Automated pipeline for de novo metabolite Identification using mass-spectrometry-based metabolomics. Analytical Chemistry, 85, 3576–3583.

    Article  PubMed  CAS  Google Scholar 

  • Peterman, S. M., Duczak, N., Kalgutkar, A. S., Lame, M. E., & Soglia, J. R. (2006). Application of a linear ion trap/orbitrap mass spectrometer in metabolite characterization studies: Examination of the Human Liver Microsomal Metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements. Journal of the American Society for Mass Spectrometry, 17, 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, A. C., Balloon, A. J., Westphall, M. S., & Coon, J. J. (2014). Development of a GC/Quadrupole-Orbitrap mass spectrometer, part II: New approaches for discovery metabolomics. Analytical Chemistry, 86(20), 10044–10051.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pittenauer, E., & Allmaier, G. (2009). The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. Journal of the American Society for Mass Spectrometry, 20(6), 1037–1047.

    Article  PubMed  CAS  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poad, B. L. J., Pham, H. T., Thomas, M. C., Nealon, J. R., Campbell, J. L., Mitchell, T. W., & Blanksby, S. J. (2010). Ozone-induced dissociation on a modified tandem linear ion-trap: Observations of different reactivity for isomeric lipids. Journal of the American Society for Mass Spectrometry, 21, 1989–1999.

    Article  PubMed  CAS  Google Scholar 

  • Prakash, C., & Cui, D. (1997). Metabolism and excretion of a new antianxiety drug candidate, CP-93,393, in cynomolgus monkeys. Identification of the novel pyrimidine ring cleaved metabolites. Drug Metabolism and Disposition, 25, 1395–1406.

    PubMed  CAS  Google Scholar 

  • Prakash, C., Shaffer, C. L., & Nedderman, A. (2007). Analytical strategies for identifying drug metabolites. Mass Spectrometry Reviews, 26(3), 340–369.

    Article  PubMed  CAS  Google Scholar 

  • Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatos, A., & Böcker, S. (2012). Identifying the unknowns by aligning fragmentation trees. Analytical Chemistry, 84(7), 3417–3426.

    Article  PubMed  CAS  Google Scholar 

  • Rathahao, E., Hillenweck, A., Paris, A., & Debrauwer, L. (2000). Investigation of the in vitro metabolism of 17ß-estradiol by LC-MS/MS using ESI and APCI. Analusis, 28(4), 273–279.

    Article  CAS  Google Scholar 

  • Rathahao, E., Page, A., Jouanin, I., Paris, A., & Debrauwer, L. (2004). Liquid chromatography coupled to negative electrospray/ion trap mass spectrometry for identification of isomeric glutathione conjugates of catechol estrogens. International Journal of Mass Spectrometry, 231, 119–129.

    Article  CAS  Google Scholar 

  • Rathahao-Paris, E., Paris, A., Bursztyka, J., Jaeg, J. P., Cravedi, J. P., & Debrauwer, L. (2014). Identification of xenobiotic metabolites from biological fluids using flow injection analysis high-resolution mass spectrometry and post-acquisition data filtering. Rapid Communications in Mass Spectrometry, 28(24), 2713–2722.

    Article  PubMed  CAS  Google Scholar 

  • Reid, M. J., Baz-Lomba, J. A., Ryu, Y., & Thomas, K. V. (2014). Using biomarkers in wastewater to monitor community drug use: A conceptual approach for dealing with new psychoactive substances. Science of the Total Environment, 487, 651–658.

    Article  PubMed  CAS  Google Scholar 

  • Ridder, L., van der Hooft, J. J. J., Verhoeven, V., de Vos, R. C., Bino, R. J., & Vervoort, J. (2013). Automatic chemical structure annotation of an LC-MSn based metabolic profile from green tea. Analytical Chemistry, 85, 6033–6040.

    Article  PubMed  CAS  Google Scholar 

  • Ridder, L., van der Hooft, J. J., Verhoeven, S., de Vos, R. C., Vervoort, J., & Bino, R. J. (2014). In silico prediction and automatic LC-MS(n) annotation of green tea metabolites in urine. Analytical Chemistry, 86(10), 4767–4774.

    Article  PubMed  CAS  Google Scholar 

  • Roux, A., Xu, Y., Heilier, J. F., Olivier, M. F., Ezan, E., Tabet, J. C., & Junot, C. (2012). Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Analytical Chemistry, 84(15), 6429–6437.

    Article  PubMed  CAS  Google Scholar 

  • Scalbert, A., Andres-Lacueva, C., Arita, M., Kroon, P., Manach, C., Urpi-Sarda, M., & Wishart, D. S. (2011). Databases on food phytochemicals and their health-promoting effects. Journal of Agricultural. Food Chemistry, 59(9), 4331–4348.

    Article  PubMed  CAS  Google Scholar 

  • Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A., & Breitling, R. (2011). PeakML/mzMatch: A file format, java library, R library, and tool-chain for mass spectrometry data analysis. Analytical Chemistry, 83(7), 2786–2793.

    Article  PubMed  CAS  Google Scholar 

  • Scheubert, K., Hufsky, F., & Böcker, S. (2013). Computational mass spectrometry for small molecules. Journal of Cheminformatics, 5(1), 1–24.

    Article  CAS  Google Scholar 

  • Schwarzenberg, A., Ichou, F., Cole, R. B., Machuron-Mandard, X., Junot, C., Lesage, D., & Tabet, J. C. (2013). Identification tree based on fragmentation rules for structure elucidation of organophosphorus esters by electrospray mass spectrometry. Journal of Mass Spectrometry, 48(5), 576–586.

    Article  PubMed  CAS  Google Scholar 

  • Schymanski, E. L., & Neumann, S. (2013). CASMI: And the winner is…. Metabolites, 3, 412–439.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shvartsburg, A. A., Isaac, G., Leveque, N., Smith, R. D., & Metz, T. O. (2011). Separation and classification of lipids using differential ion mobility spectrometry. Journal of the American Society for Mass Spectrometry, 22, 1146–1155.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., et al. (2005). Quantitative proteomic analysis by accurate mass retention time pairs. Analytical Chemistry, 77(1), 2187–2200.

    Article  PubMed  CAS  Google Scholar 

  • Sleighter, R. L., & Hatcher, P. G. (2007). The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. Journal of Mass Spectrometry, 42, 559–574.

    Article  PubMed  CAS  Google Scholar 

  • Sleno, L. (2012). The use of mass defect in modern mass spectrometry. Journal of Mass Spectrometry, 47, 226–236.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.

    Article  PubMed  CAS  Google Scholar 

  • Stoll, N., Schmidt, E., & Thurow, K. (2006). Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 17, 1692–1699.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Taguchi, V. Y., Nieckarz, R. J., Clement, R. E., Krolik, S., & Williams, R. (2010). Dioxin analysis by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry (GC-FTICR-MS). Journal of the American Society for Mass Spectrometry, 21, 1918–1921.

    PubMed  CAS  Google Scholar 

  • Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thurman, E. M., & Ferrer, I. (2010). The isotopic mass defect: A tool for limiting molecular formulas by accurate mass. Analytical and Bioanalytical Chemistry, 397, 2807–2816.

    Article  PubMed  CAS  Google Scholar 

  • Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6), 523–526.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vaniya, A., & Fiehn, O. (2015). Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends in Analytical Chemistry, 69, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Kora, G., Bowen, B. P., & Pan, C. (2014). MIDAS: A database-searching algorithm for metabolite identification in metabolomics. Analytical Chemistry, 86(19), 9496–9503.

    Article  PubMed  CAS  Google Scholar 

  • Weber, R. J. M., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83, 3737–3743.

    Article  PubMed  CAS  Google Scholar 

  • Weissberg, A., & Dagan, S. (2011). Interpretation of ESI(+)-MS-MS spectra—Towards the identification of “unknowns”. International Journal of Mass Spectrometry, 299(2–3), 158–168.

    Article  CAS  Google Scholar 

  • Werner, E., Croixmarie, V., Umbdenstock, T., Ezan, E., Chaminade, P., Tabet, J. C., & Junot, C. (2008a). Mass spectrometry-based metabolomics: Accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. Analytical Chemistry, 80(13), 4918–4932.

    Article  PubMed  CAS  Google Scholar 

  • Werner, E., Heilier, J.-F., Ducruix, C., Ezan, E., Junot, C., & Tabet, J. C. (2008b). Mass spectrometry for the identification of the discriminating signals from metabolomics: Current status and future trends. Journal of Chromatography B, 871, 143–163.

    Article  CAS  Google Scholar 

  • Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3(15), 1769–1782.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, D., Arndt, D., Pon, A., Sajed, T., Guo, A. C., Djoumbou, Y., et al. (2015). T3DB: The toxic exposome database. Nucleic Acids Research, 43, D928–D934.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The Human metabolome database. Nucleic Acids Research, 35, D521–D526.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wolf, S., Schmidt, S., Müller-Hannemann, M., & Neumann, S. (2010). In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics, 11, 148–160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, Z., Rodgers, R. P., & Marshall, A. G. (2004). Two- and three-dimensional van Krevelen diagrams: A graphical analysis complementary to the kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Analytical Chemistry, 76, 2511–2516.

    Article  PubMed  CAS  Google Scholar 

  • Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(Web Server issue), W652–W660.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xian, F., Hendrickson, C. L., & Marshall, A. G. (2012). High resolution mass spectrometry. Analytical Chemistry, 84(2), 708–719.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Heilier, J.-F., Madalinski, G., Genin, E., Ezan, E., Tabet, J.-C., & Junot, C. (2010). Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-Orbitrap mass spectrometer for further metabolomics database building. Analytical Chemistry, 82, 5490–5501.

    Article  PubMed  CAS  Google Scholar 

  • Yu, T., Park, Y., Li, S., & Jones, D. P. (2013). Hybrid feature detection and information accumulation using high- resolution LC-MS metabolomics data. Journal of Proteome Research, 12, 1419–1427.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zalko, D., Soto, A., Dolo, L., Dorio, C., Rathahao, E., Debrauwer, L., et al. (2003). Biotransformations of bisphenol A in a mammalian model: Answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environmental Health Perspectives, 111, 309–319.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeng, Z., Liu, X., Dai, W., Yin, P., Zhou, L., Huang, Q., et al. (2014). Ion fusion of high-resolution LC-MS-based metabolomics data to discover more reliable biomarkers. Analytical Chemistry, 2014(86), 3793–3800.

    Article  CAS  Google Scholar 

  • Zhang, H., Zhang, D., & Ray, K. (2003). A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. Journal of Mass Spectrometry, 38, 1110–1112.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Zhang, D., Ray, K., & Zhu, M. (2009). Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. Journal of Mass Spectrometry, 44, 999–1016.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Zhu, M., Ray, K. L., Ma, L., & Zhang, D. (2008). Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite detection. Rapid Communications in Mass Spectrometry, 22, 2082–2088.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Weber, R., Allwood, J. W., Mistrik, R., Zhu, Z., Ji, Z., et al. (2014). HAMMER: Automated operation of mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics, 30(4), 581–583.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu, M., Ma, L., Zhang, D., Ray, K., Zhao, W., Humphreys, W. G., et al. (2006). Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metabolism and Disposition, 34, 1722–1733.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Douglas N. Rutledge for taking an interest in this manuscript and for his proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estelle Rathahao-Paris.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathahao-Paris, E., Alves, S., Junot, C. et al. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics 12, 10 (2016). https://doi.org/10.1007/s11306-015-0882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-015-0882-8

Keywords

Navigation