Abstract
High resolution mass spectrometry (HRMS) is increasingly used to produce metabolomics data. Thanks to its high mass resolution and mass measurement accuracy, it is also very useful for metabolite identification. Nevertheless, a rigorous methodology is required. This manuscript describes different steps involved in the structural elucidation of metabolites and demonstrates the utility of HRMS for such purpose. After a brief overview of HRMS performances in terms of mass measurement accuracy, peak resolution, isotopic clusters/patterns and the instrumentation used, the first section is devoted to the data processing generally performed to reduce the data set size. Based on the mass accuracy measurements, different post-acquisition data processing procedures have been developed for complex mixture analysis and can be used in metabolomics. The second section describes protocols used to process putative metabolite annotations or identifications with HRMS data, based on elemental composition determined from accurately measured m/z value and mass spectral databases. Non-classical approaches are also proposed for tentative structure elucidation of unknown metabolites. Finally, limitations of the proposed workflow for metabolite structure elucidation are discussed and possible improvements are proposed.
Similar content being viewed by others
References
Allen, F., Pon, A., Wilson, M., Greiner, R., & Wishart, D. (2014). CFM-ID: A web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Research, 42, W94–W99.
Alves, S., Rathahao-Paris, E., & Tabet, J. C. (2013). Potential of Fourier transform mass spectrometry for high throughput metabolomics analysis. In D. Rolin (Ed.), Advances in botanical research: Metabolomics coming of age with its technological diversity (Vol. 67, pp. 219–302). Amsterdam: Elsevier Ltd.
Böcker, S., & Rasche, F. (2008). Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics, 24, i49–i55.
Boudah, S., Olivier, M. F., Aros-Calt, S., Oliveira, L., Fenaille, F., Tabet, J.-C., & Junot, C. (2014). Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. Journal of Chromatography B, 966, 34–47.
Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Review, 24, 223–231.
Cao, M., Fraser, K., & Rasmussen, S. (2013). Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification. Metabolites, 3, 1036–1050.
Chu, F. L., Pirastru, L., Popovic, R., & Sleno, L. (2011). Carotenogenesis Up-regulation in Scenedesmus sp. using a targeted metabolomics approach by liquid chromatography - high resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 59, 3004–3013.
de Hoffmann, E., & Stroobant, V. (2002). Mass spectrometry: Principles and applications (3rd ed.). Chichester: Wiley.
Dong, L., Shion, H., Davis, R. G., Terry-Penak, B., Castro-Perez, J., & van Breemen, R. B. (2010). Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Analytical Chemistry, 82, 9014–9021.
Du, F., Ruan, Q., Zhu, M., & Xing, J. (2013). Detection and characterization of ticlopidine conjugates in rat bile using high-resolution mass spectrometry: Applications of various data acquisition and processing tools. Journal of Mass Spectrometry, 48, 413–422.
Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625.
Dunn, W. B., Erban, A., Weber, R. J. M., Creek, D. J., Brown, M., Breitling, R., et al. (2012). Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 9(S1), 44–66.
Erve, J. C. L., Gu, M., Wang, Y., DeMaio, W., & Talaat, R. E. (2009). Spectral accuracy of molecular ions in an ltq/orbitrap mass spectrometer and implications for elemental composition determination. Journal of the American Society for Mass Spectrometry, 20, 2058–2069.
Geiger, T., Cox, J., & Mann, M. (2010). Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Molecular and Cellular Proteomics, 9(10), 2252–2261.
Gerlich, M., & Neumann, S. (2013). MetFusion: Integration of compound identification strategies. Journal of Mass Spectrometry, 48, 291–298.
Gillet, L. C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., et al. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11(6), O111–016717. 1–17.
Gougeon, R. D., Lucio, M., Frommberger, M., Peyron, D., Chassagne, D., Alexandre, H., et al. (2009). The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. PNAS, 106(23), 9174–9179.
Gowda, H., Ivanisevic, J., Johnson, C. H., Kurczy, M. E., Benton, H. P., Rinehart, D., et al. (2014). Interactive XCMS online: Simplifying advanced metabolomic data processing and subsequent statistical analyses. Analytical Chemistry, 86(14), 6931–6939.
Grange, A., Genicola, F., & Sovocool, G. W. (2002). Utility of three types of mass spectrometers for determining elemental compositions of ions formed from chromatographically separated compounds. Rapid Communications in Mass Spectrometry, 16, 2356–2369.
Grange, A. H., Zumwalt, M. C., & Sovocool, G. W. (2006). Determination of ion and neutral loss compositions and deconvolution of product ion mass spectra using an orthogonal acceleration time-of-flight mass spectrometer and an ion correlation program. Rapid Communications in Mass Spectrometry, 20, 89–102.
Hall, M. P., Ashrafi, S., Obegi, I., Petesch, R., Peterson, J. N., & Schneider, L. V. (2003). ‘Mass defect’ tags for biomolecular mass spectrometry. Journal of Mass Spectrometry, 38, 809–816.
Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 4, 128–140.
Hashimoto, S., Zushi, Y., Fushimi, A., Takazawa, Y., Tanabe, K., & Shibata, Y. (2013). Selective extraction of halogenated compounds from data measured by comprehensive multidimensional gas chromatography/high resolution time-of-flight mass spectrometry for non-target analysis of environmental and biological samples. Journal of Chromatography A, 1282, 183–189.
He, H., Conrad, C. A., Nilsson, C. L., Ji, Y., Schaub, T. M., Marshall, A. G., & Emmett, M. R. (2007). Method for lipidomic analysis: p53 expression modulation of sulfatide, ganglioside, and phospholipid composition of U87 MG glioblastoma cells. Analytical Chemistry, 79(22), 8423–8430.
Hopley, C., Bristow, T., Lubben, A., Simpson, A., Bull, E., Klagkou, K., et al. (2008). Towards a universal product ion mass spectral library-reproducibility of product ion spectra across eleven different mass spectrometers. Rapid Communications in Mass Spectrometry, 22, 1779–1786.
Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714.
Huang, X., Chen, Y., Cho, K., Nikolskiy, I., Crawford, P. A., & Patti, G. J. (2014). X13CMS: Global tracking of isotopic labels in untargeted metabolomics. Analytical Biochemistry, 86, 1632–1639.
Hufsky, F., Scheubert, K., & Böcker, S. (2014). New kids on the block: Novel informatics methods for natural product discovery. Natural Products Reports, 31, 807–817.
Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., Marshall, A. G., & Qian, K. (2001). Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra. Analytical Chemistry, 73(19), 4676–4681.
Ichou, F., Schwarzenberg, A., Lesage, D., Alves, S., Junot, C., Machuron-Mandard, X., & Tabet, J. C. (2014). Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes. Journal of Mass Spectrometry, 49(6), 498–508.
Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., et al. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54(5), 949–962.
Jobst, K. J., Shen, L., Reiner, E. J., Taguchi, V. Y., Helm, P. A., McCrindle, R., & Backus, S. (2013). The use of mass defect plots for the identification of (novel) halogenated contaminants in the environment. Analytical Biochemistry, 405, 3289–3297.
Junot, C., Fenaille, F., Colsch, B., & Bécher, F. (2014). High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrometry Reviews, 33(6), 471–500.
Junot, C., Madalinski, G., Tabet, J. C., & Ezan, E. (2010). Fourier transform mass spectrometry for metabolome analysis. Analyst, 135, 2203–2219.
Kangas, L. J., Metz, T. O., Isaac, G., Schrom, B. T., Ginovska-Pangovska, B., Wang, L., et al. (2012). In silico identification software (ISIS): A machine learning approach to tandem mass spectral identification of lipids. Bioinformatics, 28(13), 1705–1713.
Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636.
Katajamaa, M., & Oresic, M. (2007). Data processing for mass spectrometry-based metabolomics. Journal of Chromatography A, 1158, 318–328.
Kendrick, E. (1963). A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Analytical Chemistry, 35(13), 2146–2154.
Kessler, N., Walter, F., Persicke, M., Albaum, S. P., Kalinowski, J., Goesmann, A., et al. (2014). ALLocator: An interactive web platform for the analysis of metabolomic LC-ESI-MS datasets, enabling semi-automated, user-revised compound annotation and mass isotopomer ratio analysis. PLoS ONE, 9(11), e113909.
Kim, S., Kramer, R. W., & Hatcher, P. G. (2003). Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Analytical Chemistry, 75, 5336–5344.
Kind, T., & Fiehn, O. (2006). Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7, 234–244.
Kind, T., & Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105–125.
Kind, T., & Fiehn, O. (2010). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical reviews, 2, 23–60.
Kind, T., Liu, K. H., Lee, D. Y., DeFelice, B., Meissen, J. K., & Fiehn, O. (2013). LipidBlast in silico tandem mass spectrometry database for lipid identification. Nature Methods, 10(8), 755–758.
Kind, T., Scholz, M., & Fiehn, O. (2009). How large is the metabolome? A critical analysis of data exchange practices in chemistry. PlosOne, 4(5), e5440.
Koch, B. P., Dittmar, T., Witt, M., & Kattner, G. (2007). Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Analytical Chemistry, 79, 1758–1763.
Konda, C., Bendiak, B., & Xia, Y. (2012). Differentiation of the stereochemistry and anomeric configuration for 1-3 linked disaccharides via tandem mass spectrometry and 18O-labeling. Journal of the American Society for Mass Spectrometry, 23, 347–358.
Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm metabolome database. Bioinformatics, 21(8), 1635–1638.
Kramer, R. W., Kujawinski, E. B., & Hatcher, P. G. (2004). Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry. Environmental Science and Technology, 38(12), 3387–3395.
Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289.
Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., et al. (2014). DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Research, 42, D1091–D1097.
LeBlanc, A., Shiao, T. C., Roy, R., & Sleno, L. (2010). Improved detection of reactive metabolites with a bromine-containing glutathione analog using mass defect and isotope pattern matching. Rapid Communications in Mass Spectrometry, 24, 1241–1250.
Liang, Y., Xiao, W., Dai, C., Xie, L., Ding, G., Wang, G., et al. (2011). Structural identification of the metabolites for strictosamide in rats bile by an ion trap-TOF mass spectrometer and mass defect filter technique. Journal of Chromatography B, 879, 1819–1822.
Liger-Belair, G., Cilindre, C., Gougeon, R. D., Lucio, M., Gebefügi, I., Jeandet, P., & Schmitt-Kopplin, P. (2009). Unraveling different chemical fingerprints between a champagne wine and its aerosols. PNAS, 106(39), 16545–16549.
Lommen, A. (2009). MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry, 81(8), 3079–3086.
López, S. H., Ulaszewska, M. M., Hernando, M. D., Bueno, M. J., Gómez, M. J., & Fernández-Alba, A. R. (2014). Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS. Environmental Science and Pollution Research International, 21, 12583–12604.
Madalinski, G., Godat, E., Alves, S., Lesage, D., Genin, E., Levi, P., et al. (2008). Direct introduction of biological samples into a LTQ-Orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. Analytical Chemistry, 80(9), 3291–3303.
Makarov, A., Denisov, E., Lange, O., & Horning, S. (2006). Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. Journal of the American Society for Mass Spectrometry, 17(7), 977–982.
March Raymond, E. (2009). Quadrupole ion traps. Mass Spectrometry Reviews, 28(6), 961–989.
Marshall, A. G., Hendrickson, C. L., & Jackson, G. S. (1998). Fourier transform ion cyclotron mass spectrometry: A primer. Mass Spectrometry Reviews, 17(1), 1–35.
Marshall, A. G., & Rodgers, R. P. (2004). Petroleomics: The next grand challenge for chemical analysis. Accounts of Chemical Research, 37(1), 53–59.
Miura, D., Tsuji, Y., Takahashi, K., Wariishi, H., & Saito, K. (2010). A strategy for the determination of the elemental composition by Fourier transform ion cyclotron resonance mass spectrometry based on isotopic peak ratios. Analytical Chemistry, 82, 5887–5891.
Neumann, S., & Böcker, S. (2010). Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Analytical and Bioanalytical Chemistry, 398, 2779–2788.
Nishioka, T., Kasama, T., Kinumi, T., Makabe, H., Matsuda, F., Miura, D., et al. (2014). Winners of CASMI 2013: Automated tools and challenge data. Mass Spectrometry (Tokyo), 3, 1–13.
Ohta, D., Kanaya, S., & Suzuki, H. (2010). Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Current Opinion in Biotechnology, 21, 35–44.
Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16, 373–378.
Paglia, G., Williams, J. P., Menikarachchi, L., Thompson, J. W., Tyldesley-Worster, R., Halldorsson, S., et al. (2014). Ion mobility derived collision cross sections to support metabolomics applications. Analytical Chemistry, 86, 3985–3993.
Paris, A., & Rao, D. (1989). Biosynthesis of estradiol-17beta fatty acyl esters by microsomes derived from bovine liver and adrenals. Journal of Steroid Biochemistry, 33(3), 465–472.
Peironcely, J. E., Rojas-Cherto, M., Tas, A., Vreeken, R., Reijmers, T., Coulier, L., & Hankemeier, T. (2013). Automated pipeline for de novo metabolite Identification using mass-spectrometry-based metabolomics. Analytical Chemistry, 85, 3576–3583.
Peterman, S. M., Duczak, N., Kalgutkar, A. S., Lame, M. E., & Soglia, J. R. (2006). Application of a linear ion trap/orbitrap mass spectrometer in metabolite characterization studies: Examination of the Human Liver Microsomal Metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements. Journal of the American Society for Mass Spectrometry, 17, 363–375.
Peterson, A. C., Balloon, A. J., Westphall, M. S., & Coon, J. J. (2014). Development of a GC/Quadrupole-Orbitrap mass spectrometer, part II: New approaches for discovery metabolomics. Analytical Chemistry, 86(20), 10044–10051.
Pittenauer, E., & Allmaier, G. (2009). The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. Journal of the American Society for Mass Spectrometry, 20(6), 1037–1047.
Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395–406.
Poad, B. L. J., Pham, H. T., Thomas, M. C., Nealon, J. R., Campbell, J. L., Mitchell, T. W., & Blanksby, S. J. (2010). Ozone-induced dissociation on a modified tandem linear ion-trap: Observations of different reactivity for isomeric lipids. Journal of the American Society for Mass Spectrometry, 21, 1989–1999.
Prakash, C., & Cui, D. (1997). Metabolism and excretion of a new antianxiety drug candidate, CP-93,393, in cynomolgus monkeys. Identification of the novel pyrimidine ring cleaved metabolites. Drug Metabolism and Disposition, 25, 1395–1406.
Prakash, C., Shaffer, C. L., & Nedderman, A. (2007). Analytical strategies for identifying drug metabolites. Mass Spectrometry Reviews, 26(3), 340–369.
Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatos, A., & Böcker, S. (2012). Identifying the unknowns by aligning fragmentation trees. Analytical Chemistry, 84(7), 3417–3426.
Rathahao, E., Hillenweck, A., Paris, A., & Debrauwer, L. (2000). Investigation of the in vitro metabolism of 17ß-estradiol by LC-MS/MS using ESI and APCI. Analusis, 28(4), 273–279.
Rathahao, E., Page, A., Jouanin, I., Paris, A., & Debrauwer, L. (2004). Liquid chromatography coupled to negative electrospray/ion trap mass spectrometry for identification of isomeric glutathione conjugates of catechol estrogens. International Journal of Mass Spectrometry, 231, 119–129.
Rathahao-Paris, E., Paris, A., Bursztyka, J., Jaeg, J. P., Cravedi, J. P., & Debrauwer, L. (2014). Identification of xenobiotic metabolites from biological fluids using flow injection analysis high-resolution mass spectrometry and post-acquisition data filtering. Rapid Communications in Mass Spectrometry, 28(24), 2713–2722.
Reid, M. J., Baz-Lomba, J. A., Ryu, Y., & Thomas, K. V. (2014). Using biomarkers in wastewater to monitor community drug use: A conceptual approach for dealing with new psychoactive substances. Science of the Total Environment, 487, 651–658.
Ridder, L., van der Hooft, J. J. J., Verhoeven, V., de Vos, R. C., Bino, R. J., & Vervoort, J. (2013). Automatic chemical structure annotation of an LC-MSn based metabolic profile from green tea. Analytical Chemistry, 85, 6033–6040.
Ridder, L., van der Hooft, J. J., Verhoeven, S., de Vos, R. C., Vervoort, J., & Bino, R. J. (2014). In silico prediction and automatic LC-MS(n) annotation of green tea metabolites in urine. Analytical Chemistry, 86(10), 4767–4774.
Roux, A., Xu, Y., Heilier, J. F., Olivier, M. F., Ezan, E., Tabet, J. C., & Junot, C. (2012). Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Analytical Chemistry, 84(15), 6429–6437.
Scalbert, A., Andres-Lacueva, C., Arita, M., Kroon, P., Manach, C., Urpi-Sarda, M., & Wishart, D. S. (2011). Databases on food phytochemicals and their health-promoting effects. Journal of Agricultural. Food Chemistry, 59(9), 4331–4348.
Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458.
Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A., & Breitling, R. (2011). PeakML/mzMatch: A file format, java library, R library, and tool-chain for mass spectrometry data analysis. Analytical Chemistry, 83(7), 2786–2793.
Scheubert, K., Hufsky, F., & Böcker, S. (2013). Computational mass spectrometry for small molecules. Journal of Cheminformatics, 5(1), 1–24.
Schwarzenberg, A., Ichou, F., Cole, R. B., Machuron-Mandard, X., Junot, C., Lesage, D., & Tabet, J. C. (2013). Identification tree based on fragmentation rules for structure elucidation of organophosphorus esters by electrospray mass spectrometry. Journal of Mass Spectrometry, 48(5), 576–586.
Schymanski, E. L., & Neumann, S. (2013). CASMI: And the winner is…. Metabolites, 3, 412–439.
Shvartsburg, A. A., Isaac, G., Leveque, N., Smith, R. D., & Metz, T. O. (2011). Separation and classification of lipids using differential ion mobility spectrometry. Journal of the American Society for Mass Spectrometry, 22, 1146–1155.
Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., et al. (2005). Quantitative proteomic analysis by accurate mass retention time pairs. Analytical Chemistry, 77(1), 2187–2200.
Sleighter, R. L., & Hatcher, P. G. (2007). The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. Journal of Mass Spectrometry, 42, 559–574.
Sleno, L. (2012). The use of mass defect in modern mass spectrometry. Journal of Mass Spectrometry, 47, 226–236.
Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.
Stoll, N., Schmidt, E., & Thurow, K. (2006). Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 17, 1692–1699.
Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.
Taguchi, V. Y., Nieckarz, R. J., Clement, R. E., Krolik, S., & Williams, R. (2010). Dioxin analysis by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry (GC-FTICR-MS). Journal of the American Society for Mass Spectrometry, 21, 1918–1921.
Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039.
Thurman, E. M., & Ferrer, I. (2010). The isotopic mass defect: A tool for limiting molecular formulas by accurate mass. Analytical and Bioanalytical Chemistry, 397, 2807–2816.
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6), 523–526.
Vaniya, A., & Fiehn, O. (2015). Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends in Analytical Chemistry, 69, 52–61.
Wang, Y., Kora, G., Bowen, B. P., & Pan, C. (2014). MIDAS: A database-searching algorithm for metabolite identification in metabolomics. Analytical Chemistry, 86(19), 9496–9503.
Weber, R. J. M., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83, 3737–3743.
Weissberg, A., & Dagan, S. (2011). Interpretation of ESI(+)-MS-MS spectra—Towards the identification of “unknowns”. International Journal of Mass Spectrometry, 299(2–3), 158–168.
Werner, E., Croixmarie, V., Umbdenstock, T., Ezan, E., Chaminade, P., Tabet, J. C., & Junot, C. (2008a). Mass spectrometry-based metabolomics: Accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. Analytical Chemistry, 80(13), 4918–4932.
Werner, E., Heilier, J.-F., Ducruix, C., Ezan, E., Junot, C., & Tabet, J. C. (2008b). Mass spectrometry for the identification of the discriminating signals from metabolomics: Current status and future trends. Journal of Chromatography B, 871, 143–163.
Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3(15), 1769–1782.
Wishart, D., Arndt, D., Pon, A., Sajed, T., Guo, A. C., Djoumbou, Y., et al. (2015). T3DB: The toxic exposome database. Nucleic Acids Research, 43, D928–D934.
Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.
Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The Human metabolome database. Nucleic Acids Research, 35, D521–D526.
Wolf, S., Schmidt, S., Müller-Hannemann, M., & Neumann, S. (2010). In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics, 11, 148–160.
Wu, Z., Rodgers, R. P., & Marshall, A. G. (2004). Two- and three-dimensional van Krevelen diagrams: A graphical analysis complementary to the kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Analytical Chemistry, 76, 2511–2516.
Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(Web Server issue), W652–W660.
Xian, F., Hendrickson, C. L., & Marshall, A. G. (2012). High resolution mass spectrometry. Analytical Chemistry, 84(2), 708–719.
Xu, Y., Heilier, J.-F., Madalinski, G., Genin, E., Ezan, E., Tabet, J.-C., & Junot, C. (2010). Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-Orbitrap mass spectrometer for further metabolomics database building. Analytical Chemistry, 82, 5490–5501.
Yu, T., Park, Y., Li, S., & Jones, D. P. (2013). Hybrid feature detection and information accumulation using high- resolution LC-MS metabolomics data. Journal of Proteome Research, 12, 1419–1427.
Zalko, D., Soto, A., Dolo, L., Dorio, C., Rathahao, E., Debrauwer, L., et al. (2003). Biotransformations of bisphenol A in a mammalian model: Answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environmental Health Perspectives, 111, 309–319.
Zeng, Z., Liu, X., Dai, W., Yin, P., Zhou, L., Huang, Q., et al. (2014). Ion fusion of high-resolution LC-MS-based metabolomics data to discover more reliable biomarkers. Analytical Chemistry, 2014(86), 3793–3800.
Zhang, H., Zhang, D., & Ray, K. (2003). A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. Journal of Mass Spectrometry, 38, 1110–1112.
Zhang, H., Zhang, D., Ray, K., & Zhu, M. (2009). Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. Journal of Mass Spectrometry, 44, 999–1016.
Zhang, H., Zhu, M., Ray, K. L., Ma, L., & Zhang, D. (2008). Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite detection. Rapid Communications in Mass Spectrometry, 22, 2082–2088.
Zhou, J., Weber, R., Allwood, J. W., Mistrik, R., Zhu, Z., Ji, Z., et al. (2014). HAMMER: Automated operation of mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics, 30(4), 581–583.
Zhu, M., Ma, L., Zhang, D., Ray, K., Zhao, W., Humphreys, W. G., et al. (2006). Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metabolism and Disposition, 34, 1722–1733.
Acknowledgments
The authors thank Professor Douglas N. Rutledge for taking an interest in this manuscript and for his proof reading.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Rathahao-Paris, E., Alves, S., Junot, C. et al. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics 12, 10 (2016). https://doi.org/10.1007/s11306-015-0882-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11306-015-0882-8