, 12:10 | Cite as

High resolution mass spectrometry for structural identification of metabolites in metabolomics

  • Estelle Rathahao-ParisEmail author
  • Sandra Alves
  • Christophe Junot
  • Jean-Claude Tabet
Review Article


High resolution mass spectrometry (HRMS) is increasingly used to produce metabolomics data. Thanks to its high mass resolution and mass measurement accuracy, it is also very useful for metabolite identification. Nevertheless, a rigorous methodology is required. This manuscript describes different steps involved in the structural elucidation of metabolites and demonstrates the utility of HRMS for such purpose. After a brief overview of HRMS performances in terms of mass measurement accuracy, peak resolution, isotopic clusters/patterns and the instrumentation used, the first section is devoted to the data processing generally performed to reduce the data set size. Based on the mass accuracy measurements, different post-acquisition data processing procedures have been developed for complex mixture analysis and can be used in metabolomics. The second section describes protocols used to process putative metabolite annotations or identifications with HRMS data, based on elemental composition determined from accurately measured m/z value and mass spectral databases. Non-classical approaches are also proposed for tentative structure elucidation of unknown metabolites. Finally, limitations of the proposed workflow for metabolite structure elucidation are discussed and possible improvements are proposed.


High resolution mass spectrometry Tandem mass spectrometry Accurate mass measurements Mass spectral database Isotopic patterns Metabolite annotation de novo structure elucidation 



The authors thank Professor Douglas N. Rutledge for taking an interest in this manuscript and for his proof reading.

Compliance with ethical satndards

Conflict of Interest

The authors declare no conflict of interest.


  1. Allen, F., Pon, A., Wilson, M., Greiner, R., & Wishart, D. (2014). CFM-ID: A web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Research, 42, W94–W99.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alves, S., Rathahao-Paris, E., & Tabet, J. C. (2013). Potential of Fourier transform mass spectrometry for high throughput metabolomics analysis. In D. Rolin (Ed.), Advances in botanical research: Metabolomics coming of age with its technological diversity (Vol. 67, pp. 219–302). Amsterdam: Elsevier Ltd.CrossRefGoogle Scholar
  3. Böcker, S., & Rasche, F. (2008). Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics, 24, i49–i55.PubMedCrossRefGoogle Scholar
  4. Boudah, S., Olivier, M. F., Aros-Calt, S., Oliveira, L., Fenaille, F., Tabet, J.-C., & Junot, C. (2014). Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. Journal of Chromatography B, 966, 34–47.CrossRefGoogle Scholar
  5. Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Review, 24, 223–231.CrossRefGoogle Scholar
  6. Cao, M., Fraser, K., & Rasmussen, S. (2013). Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification. Metabolites, 3, 1036–1050.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chu, F. L., Pirastru, L., Popovic, R., & Sleno, L. (2011). Carotenogenesis Up-regulation in Scenedesmus sp. using a targeted metabolomics approach by liquid chromatography - high resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 59, 3004–3013.PubMedCrossRefGoogle Scholar
  8. de Hoffmann, E., & Stroobant, V. (2002). Mass spectrometry: Principles and applications (3rd ed.). Chichester: Wiley.Google Scholar
  9. Dong, L., Shion, H., Davis, R. G., Terry-Penak, B., Castro-Perez, J., & van Breemen, R. B. (2010). Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Analytical Chemistry, 82, 9014–9021.PubMedCrossRefGoogle Scholar
  10. Du, F., Ruan, Q., Zhu, M., & Xing, J. (2013). Detection and characterization of ticlopidine conjugates in rat bile using high-resolution mass spectrometry: Applications of various data acquisition and processing tools. Journal of Mass Spectrometry, 48, 413–422.PubMedCrossRefGoogle Scholar
  11. Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625.PubMedCrossRefGoogle Scholar
  12. Dunn, W. B., Erban, A., Weber, R. J. M., Creek, D. J., Brown, M., Breitling, R., et al. (2012). Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 9(S1), 44–66.CrossRefGoogle Scholar
  13. Erve, J. C. L., Gu, M., Wang, Y., DeMaio, W., & Talaat, R. E. (2009). Spectral accuracy of molecular ions in an ltq/orbitrap mass spectrometer and implications for elemental composition determination. Journal of the American Society for Mass Spectrometry, 20, 2058–2069.PubMedCrossRefGoogle Scholar
  14. Geiger, T., Cox, J., & Mann, M. (2010). Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Molecular and Cellular Proteomics, 9(10), 2252–2261.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gerlich, M., & Neumann, S. (2013). MetFusion: Integration of compound identification strategies. Journal of Mass Spectrometry, 48, 291–298.PubMedCrossRefGoogle Scholar
  16. Gillet, L. C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., et al. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11(6), O111–016717. 1–17.CrossRefGoogle Scholar
  17. Gougeon, R. D., Lucio, M., Frommberger, M., Peyron, D., Chassagne, D., Alexandre, H., et al. (2009). The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. PNAS, 106(23), 9174–9179.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gowda, H., Ivanisevic, J., Johnson, C. H., Kurczy, M. E., Benton, H. P., Rinehart, D., et al. (2014). Interactive XCMS online: Simplifying advanced metabolomic data processing and subsequent statistical analyses. Analytical Chemistry, 86(14), 6931–6939.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Grange, A., Genicola, F., & Sovocool, G. W. (2002). Utility of three types of mass spectrometers for determining elemental compositions of ions formed from chromatographically separated compounds. Rapid Communications in Mass Spectrometry, 16, 2356–2369.PubMedCrossRefGoogle Scholar
  20. Grange, A. H., Zumwalt, M. C., & Sovocool, G. W. (2006). Determination of ion and neutral loss compositions and deconvolution of product ion mass spectra using an orthogonal acceleration time-of-flight mass spectrometer and an ion correlation program. Rapid Communications in Mass Spectrometry, 20, 89–102.PubMedCrossRefGoogle Scholar
  21. Hall, M. P., Ashrafi, S., Obegi, I., Petesch, R., Peterson, J. N., & Schneider, L. V. (2003). ‘Mass defect’ tags for biomolecular mass spectrometry. Journal of Mass Spectrometry, 38, 809–816.PubMedCrossRefGoogle Scholar
  22. Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 4, 128–140.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hashimoto, S., Zushi, Y., Fushimi, A., Takazawa, Y., Tanabe, K., & Shibata, Y. (2013). Selective extraction of halogenated compounds from data measured by comprehensive multidimensional gas chromatography/high resolution time-of-flight mass spectrometry for non-target analysis of environmental and biological samples. Journal of Chromatography A, 1282, 183–189.PubMedCrossRefGoogle Scholar
  24. He, H., Conrad, C. A., Nilsson, C. L., Ji, Y., Schaub, T. M., Marshall, A. G., & Emmett, M. R. (2007). Method for lipidomic analysis: p53 expression modulation of sulfatide, ganglioside, and phospholipid composition of U87 MG glioblastoma cells. Analytical Chemistry, 79(22), 8423–8430.PubMedCrossRefGoogle Scholar
  25. Hopley, C., Bristow, T., Lubben, A., Simpson, A., Bull, E., Klagkou, K., et al. (2008). Towards a universal product ion mass spectral library-reproducibility of product ion spectra across eleven different mass spectrometers. Rapid Communications in Mass Spectrometry, 22, 1779–1786.PubMedCrossRefGoogle Scholar
  26. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714.PubMedCrossRefGoogle Scholar
  27. Huang, X., Chen, Y., Cho, K., Nikolskiy, I., Crawford, P. A., & Patti, G. J. (2014). X13CMS: Global tracking of isotopic labels in untargeted metabolomics. Analytical Biochemistry, 86, 1632–1639.Google Scholar
  28. Hufsky, F., Scheubert, K., & Böcker, S. (2014). New kids on the block: Novel informatics methods for natural product discovery. Natural Products Reports, 31, 807–817.CrossRefGoogle Scholar
  29. Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., Marshall, A. G., & Qian, K. (2001). Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra. Analytical Chemistry, 73(19), 4676–4681.PubMedCrossRefGoogle Scholar
  30. Ichou, F., Schwarzenberg, A., Lesage, D., Alves, S., Junot, C., Machuron-Mandard, X., & Tabet, J. C. (2014). Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes. Journal of Mass Spectrometry, 49(6), 498–508.PubMedCrossRefGoogle Scholar
  31. Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., et al. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54(5), 949–962.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Jobst, K. J., Shen, L., Reiner, E. J., Taguchi, V. Y., Helm, P. A., McCrindle, R., & Backus, S. (2013). The use of mass defect plots for the identification of (novel) halogenated contaminants in the environment. Analytical Biochemistry, 405, 3289–3297.Google Scholar
  33. Junot, C., Fenaille, F., Colsch, B., & Bécher, F. (2014). High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrometry Reviews, 33(6), 471–500.PubMedCrossRefGoogle Scholar
  34. Junot, C., Madalinski, G., Tabet, J. C., & Ezan, E. (2010). Fourier transform mass spectrometry for metabolome analysis. Analyst, 135, 2203–2219.PubMedCrossRefGoogle Scholar
  35. Kangas, L. J., Metz, T. O., Isaac, G., Schrom, B. T., Ginovska-Pangovska, B., Wang, L., et al. (2012). In silico identification software (ISIS): A machine learning approach to tandem mass spectral identification of lipids. Bioinformatics, 28(13), 1705–1713.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636.PubMedCrossRefGoogle Scholar
  37. Katajamaa, M., & Oresic, M. (2007). Data processing for mass spectrometry-based metabolomics. Journal of Chromatography A, 1158, 318–328.PubMedCrossRefGoogle Scholar
  38. Kendrick, E. (1963). A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Analytical Chemistry, 35(13), 2146–2154.CrossRefGoogle Scholar
  39. Kessler, N., Walter, F., Persicke, M., Albaum, S. P., Kalinowski, J., Goesmann, A., et al. (2014). ALLocator: An interactive web platform for the analysis of metabolomic LC-ESI-MS datasets, enabling semi-automated, user-revised compound annotation and mass isotopomer ratio analysis. PLoS ONE, 9(11), e113909.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kim, S., Kramer, R. W., & Hatcher, P. G. (2003). Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Analytical Chemistry, 75, 5336–5344.PubMedCrossRefGoogle Scholar
  41. Kind, T., & Fiehn, O. (2006). Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7, 234–244.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kind, T., & Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105–125.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kind, T., & Fiehn, O. (2010). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical reviews, 2, 23–60.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kind, T., Liu, K. H., Lee, D. Y., DeFelice, B., Meissen, J. K., & Fiehn, O. (2013). LipidBlast in silico tandem mass spectrometry database for lipid identification. Nature Methods, 10(8), 755–758.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kind, T., Scholz, M., & Fiehn, O. (2009). How large is the metabolome? A critical analysis of data exchange practices in chemistry. PlosOne, 4(5), e5440.CrossRefGoogle Scholar
  46. Koch, B. P., Dittmar, T., Witt, M., & Kattner, G. (2007). Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Analytical Chemistry, 79, 1758–1763.PubMedCrossRefGoogle Scholar
  47. Konda, C., Bendiak, B., & Xia, Y. (2012). Differentiation of the stereochemistry and anomeric configuration for 1-3 linked disaccharides via tandem mass spectrometry and 18O-labeling. Journal of the American Society for Mass Spectrometry, 23, 347–358.PubMedCrossRefGoogle Scholar
  48. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm metabolome database. Bioinformatics, 21(8), 1635–1638.PubMedCrossRefGoogle Scholar
  49. Kramer, R. W., Kujawinski, E. B., & Hatcher, P. G. (2004). Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry. Environmental Science and Technology, 38(12), 3387–3395.PubMedCrossRefGoogle Scholar
  50. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., et al. (2014). DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Research, 42, D1091–D1097.PubMedPubMedCentralCrossRefGoogle Scholar
  52. LeBlanc, A., Shiao, T. C., Roy, R., & Sleno, L. (2010). Improved detection of reactive metabolites with a bromine-containing glutathione analog using mass defect and isotope pattern matching. Rapid Communications in Mass Spectrometry, 24, 1241–1250.PubMedCrossRefGoogle Scholar
  53. Liang, Y., Xiao, W., Dai, C., Xie, L., Ding, G., Wang, G., et al. (2011). Structural identification of the metabolites for strictosamide in rats bile by an ion trap-TOF mass spectrometer and mass defect filter technique. Journal of Chromatography B, 879, 1819–1822.CrossRefGoogle Scholar
  54. Liger-Belair, G., Cilindre, C., Gougeon, R. D., Lucio, M., Gebefügi, I., Jeandet, P., & Schmitt-Kopplin, P. (2009). Unraveling different chemical fingerprints between a champagne wine and its aerosols. PNAS, 106(39), 16545–16549.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lommen, A. (2009). MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry, 81(8), 3079–3086.PubMedCrossRefGoogle Scholar
  56. López, S. H., Ulaszewska, M. M., Hernando, M. D., Bueno, M. J., Gómez, M. J., & Fernández-Alba, A. R. (2014). Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS. Environmental Science and Pollution Research International, 21, 12583–12604.PubMedCrossRefGoogle Scholar
  57. Madalinski, G., Godat, E., Alves, S., Lesage, D., Genin, E., Levi, P., et al. (2008). Direct introduction of biological samples into a LTQ-Orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. Analytical Chemistry, 80(9), 3291–3303.PubMedCrossRefGoogle Scholar
  58. Makarov, A., Denisov, E., Lange, O., & Horning, S. (2006). Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. Journal of the American Society for Mass Spectrometry, 17(7), 977–982.PubMedCrossRefGoogle Scholar
  59. March Raymond, E. (2009). Quadrupole ion traps. Mass Spectrometry Reviews, 28(6), 961–989.PubMedCrossRefGoogle Scholar
  60. Marshall, A. G., Hendrickson, C. L., & Jackson, G. S. (1998). Fourier transform ion cyclotron mass spectrometry: A primer. Mass Spectrometry Reviews, 17(1), 1–35.PubMedCrossRefGoogle Scholar
  61. Marshall, A. G., & Rodgers, R. P. (2004). Petroleomics: The next grand challenge for chemical analysis. Accounts of Chemical Research, 37(1), 53–59.PubMedCrossRefGoogle Scholar
  62. Miura, D., Tsuji, Y., Takahashi, K., Wariishi, H., & Saito, K. (2010). A strategy for the determination of the elemental composition by Fourier transform ion cyclotron resonance mass spectrometry based on isotopic peak ratios. Analytical Chemistry, 82, 5887–5891.PubMedCrossRefGoogle Scholar
  63. Neumann, S., & Böcker, S. (2010). Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Analytical and Bioanalytical Chemistry, 398, 2779–2788.PubMedCrossRefGoogle Scholar
  64. Nishioka, T., Kasama, T., Kinumi, T., Makabe, H., Matsuda, F., Miura, D., et al. (2014). Winners of CASMI 2013: Automated tools and challenge data. Mass Spectrometry (Tokyo), 3, 1–13.Google Scholar
  65. Ohta, D., Kanaya, S., & Suzuki, H. (2010). Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Current Opinion in Biotechnology, 21, 35–44.PubMedCrossRefGoogle Scholar
  66. Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16, 373–378.PubMedCrossRefGoogle Scholar
  67. Paglia, G., Williams, J. P., Menikarachchi, L., Thompson, J. W., Tyldesley-Worster, R., Halldorsson, S., et al. (2014). Ion mobility derived collision cross sections to support metabolomics applications. Analytical Chemistry, 86, 3985–3993.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Paris, A., & Rao, D. (1989). Biosynthesis of estradiol-17beta fatty acyl esters by microsomes derived from bovine liver and adrenals. Journal of Steroid Biochemistry, 33(3), 465–472.PubMedCrossRefGoogle Scholar
  69. Peironcely, J. E., Rojas-Cherto, M., Tas, A., Vreeken, R., Reijmers, T., Coulier, L., & Hankemeier, T. (2013). Automated pipeline for de novo metabolite Identification using mass-spectrometry-based metabolomics. Analytical Chemistry, 85, 3576–3583.PubMedCrossRefGoogle Scholar
  70. Peterman, S. M., Duczak, N., Kalgutkar, A. S., Lame, M. E., & Soglia, J. R. (2006). Application of a linear ion trap/orbitrap mass spectrometer in metabolite characterization studies: Examination of the Human Liver Microsomal Metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements. Journal of the American Society for Mass Spectrometry, 17, 363–375.PubMedCrossRefGoogle Scholar
  71. Peterson, A. C., Balloon, A. J., Westphall, M. S., & Coon, J. J. (2014). Development of a GC/Quadrupole-Orbitrap mass spectrometer, part II: New approaches for discovery metabolomics. Analytical Chemistry, 86(20), 10044–10051.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pittenauer, E., & Allmaier, G. (2009). The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. Journal of the American Society for Mass Spectrometry, 20(6), 1037–1047.PubMedCrossRefGoogle Scholar
  73. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395–406.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Poad, B. L. J., Pham, H. T., Thomas, M. C., Nealon, J. R., Campbell, J. L., Mitchell, T. W., & Blanksby, S. J. (2010). Ozone-induced dissociation on a modified tandem linear ion-trap: Observations of different reactivity for isomeric lipids. Journal of the American Society for Mass Spectrometry, 21, 1989–1999.PubMedCrossRefGoogle Scholar
  75. Prakash, C., & Cui, D. (1997). Metabolism and excretion of a new antianxiety drug candidate, CP-93,393, in cynomolgus monkeys. Identification of the novel pyrimidine ring cleaved metabolites. Drug Metabolism and Disposition, 25, 1395–1406.PubMedGoogle Scholar
  76. Prakash, C., Shaffer, C. L., & Nedderman, A. (2007). Analytical strategies for identifying drug metabolites. Mass Spectrometry Reviews, 26(3), 340–369.PubMedCrossRefGoogle Scholar
  77. Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatos, A., & Böcker, S. (2012). Identifying the unknowns by aligning fragmentation trees. Analytical Chemistry, 84(7), 3417–3426.PubMedCrossRefGoogle Scholar
  78. Rathahao, E., Hillenweck, A., Paris, A., & Debrauwer, L. (2000). Investigation of the in vitro metabolism of 17ß-estradiol by LC-MS/MS using ESI and APCI. Analusis, 28(4), 273–279.CrossRefGoogle Scholar
  79. Rathahao, E., Page, A., Jouanin, I., Paris, A., & Debrauwer, L. (2004). Liquid chromatography coupled to negative electrospray/ion trap mass spectrometry for identification of isomeric glutathione conjugates of catechol estrogens. International Journal of Mass Spectrometry, 231, 119–129.CrossRefGoogle Scholar
  80. Rathahao-Paris, E., Paris, A., Bursztyka, J., Jaeg, J. P., Cravedi, J. P., & Debrauwer, L. (2014). Identification of xenobiotic metabolites from biological fluids using flow injection analysis high-resolution mass spectrometry and post-acquisition data filtering. Rapid Communications in Mass Spectrometry, 28(24), 2713–2722.PubMedCrossRefGoogle Scholar
  81. Reid, M. J., Baz-Lomba, J. A., Ryu, Y., & Thomas, K. V. (2014). Using biomarkers in wastewater to monitor community drug use: A conceptual approach for dealing with new psychoactive substances. Science of the Total Environment, 487, 651–658.PubMedCrossRefGoogle Scholar
  82. Ridder, L., van der Hooft, J. J. J., Verhoeven, V., de Vos, R. C., Bino, R. J., & Vervoort, J. (2013). Automatic chemical structure annotation of an LC-MSn based metabolic profile from green tea. Analytical Chemistry, 85, 6033–6040.PubMedCrossRefGoogle Scholar
  83. Ridder, L., van der Hooft, J. J., Verhoeven, S., de Vos, R. C., Vervoort, J., & Bino, R. J. (2014). In silico prediction and automatic LC-MS(n) annotation of green tea metabolites in urine. Analytical Chemistry, 86(10), 4767–4774.PubMedCrossRefGoogle Scholar
  84. Roux, A., Xu, Y., Heilier, J. F., Olivier, M. F., Ezan, E., Tabet, J. C., & Junot, C. (2012). Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Analytical Chemistry, 84(15), 6429–6437.PubMedCrossRefGoogle Scholar
  85. Scalbert, A., Andres-Lacueva, C., Arita, M., Kroon, P., Manach, C., Urpi-Sarda, M., & Wishart, D. S. (2011). Databases on food phytochemicals and their health-promoting effects. Journal of Agricultural. Food Chemistry, 59(9), 4331–4348.PubMedCrossRefGoogle Scholar
  86. Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A., & Breitling, R. (2011). PeakML/mzMatch: A file format, java library, R library, and tool-chain for mass spectrometry data analysis. Analytical Chemistry, 83(7), 2786–2793.PubMedCrossRefGoogle Scholar
  88. Scheubert, K., Hufsky, F., & Böcker, S. (2013). Computational mass spectrometry for small molecules. Journal of Cheminformatics, 5(1), 1–24.CrossRefGoogle Scholar
  89. Schwarzenberg, A., Ichou, F., Cole, R. B., Machuron-Mandard, X., Junot, C., Lesage, D., & Tabet, J. C. (2013). Identification tree based on fragmentation rules for structure elucidation of organophosphorus esters by electrospray mass spectrometry. Journal of Mass Spectrometry, 48(5), 576–586.PubMedCrossRefGoogle Scholar
  90. Schymanski, E. L., & Neumann, S. (2013). CASMI: And the winner is…. Metabolites, 3, 412–439.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shvartsburg, A. A., Isaac, G., Leveque, N., Smith, R. D., & Metz, T. O. (2011). Separation and classification of lipids using differential ion mobility spectrometry. Journal of the American Society for Mass Spectrometry, 22, 1146–1155.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., et al. (2005). Quantitative proteomic analysis by accurate mass retention time pairs. Analytical Chemistry, 77(1), 2187–2200.PubMedCrossRefGoogle Scholar
  93. Sleighter, R. L., & Hatcher, P. G. (2007). The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. Journal of Mass Spectrometry, 42, 559–574.PubMedCrossRefGoogle Scholar
  94. Sleno, L. (2012). The use of mass defect in modern mass spectrometry. Journal of Mass Spectrometry, 47, 226–236.PubMedCrossRefGoogle Scholar
  95. Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.PubMedCrossRefGoogle Scholar
  96. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.PubMedCrossRefGoogle Scholar
  97. Stoll, N., Schmidt, E., & Thurow, K. (2006). Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 17, 1692–1699.PubMedCrossRefGoogle Scholar
  98. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Taguchi, V. Y., Nieckarz, R. J., Clement, R. E., Krolik, S., & Williams, R. (2010). Dioxin analysis by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry (GC-FTICR-MS). Journal of the American Society for Mass Spectrometry, 21, 1918–1921.PubMedGoogle Scholar
  100. Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Thurman, E. M., & Ferrer, I. (2010). The isotopic mass defect: A tool for limiting molecular formulas by accurate mass. Analytical and Bioanalytical Chemistry, 397, 2807–2816.PubMedCrossRefGoogle Scholar
  102. Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6), 523–526.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Vaniya, A., & Fiehn, O. (2015). Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends in Analytical Chemistry, 69, 52–61.PubMedCrossRefGoogle Scholar
  104. Wang, Y., Kora, G., Bowen, B. P., & Pan, C. (2014). MIDAS: A database-searching algorithm for metabolite identification in metabolomics. Analytical Chemistry, 86(19), 9496–9503.PubMedCrossRefGoogle Scholar
  105. Weber, R. J. M., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83, 3737–3743.PubMedCrossRefGoogle Scholar
  106. Weissberg, A., & Dagan, S. (2011). Interpretation of ESI(+)-MS-MS spectra—Towards the identification of “unknowns”. International Journal of Mass Spectrometry, 299(2–3), 158–168.CrossRefGoogle Scholar
  107. Werner, E., Croixmarie, V., Umbdenstock, T., Ezan, E., Chaminade, P., Tabet, J. C., & Junot, C. (2008a). Mass spectrometry-based metabolomics: Accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. Analytical Chemistry, 80(13), 4918–4932.PubMedCrossRefGoogle Scholar
  108. Werner, E., Heilier, J.-F., Ducruix, C., Ezan, E., Junot, C., & Tabet, J. C. (2008b). Mass spectrometry for the identification of the discriminating signals from metabolomics: Current status and future trends. Journal of Chromatography B, 871, 143–163.CrossRefGoogle Scholar
  109. Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3(15), 1769–1782.PubMedCrossRefGoogle Scholar
  110. Wishart, D., Arndt, D., Pon, A., Sajed, T., Guo, A. C., Djoumbou, Y., et al. (2015). T3DB: The toxic exposome database. Nucleic Acids Research, 43, D928–D934.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The Human metabolome database. Nucleic Acids Research, 35, D521–D526.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wolf, S., Schmidt, S., Müller-Hannemann, M., & Neumann, S. (2010). In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics, 11, 148–160.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wu, Z., Rodgers, R. P., & Marshall, A. G. (2004). Two- and three-dimensional van Krevelen diagrams: A graphical analysis complementary to the kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Analytical Chemistry, 76, 2511–2516.PubMedCrossRefGoogle Scholar
  115. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(Web Server issue), W652–W660.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Xian, F., Hendrickson, C. L., & Marshall, A. G. (2012). High resolution mass spectrometry. Analytical Chemistry, 84(2), 708–719.PubMedCrossRefGoogle Scholar
  117. Xu, Y., Heilier, J.-F., Madalinski, G., Genin, E., Ezan, E., Tabet, J.-C., & Junot, C. (2010). Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-Orbitrap mass spectrometer for further metabolomics database building. Analytical Chemistry, 82, 5490–5501.PubMedCrossRefGoogle Scholar
  118. Yu, T., Park, Y., Li, S., & Jones, D. P. (2013). Hybrid feature detection and information accumulation using high- resolution LC-MS metabolomics data. Journal of Proteome Research, 12, 1419–1427.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zalko, D., Soto, A., Dolo, L., Dorio, C., Rathahao, E., Debrauwer, L., et al. (2003). Biotransformations of bisphenol A in a mammalian model: Answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environmental Health Perspectives, 111, 309–319.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zeng, Z., Liu, X., Dai, W., Yin, P., Zhou, L., Huang, Q., et al. (2014). Ion fusion of high-resolution LC-MS-based metabolomics data to discover more reliable biomarkers. Analytical Chemistry, 2014(86), 3793–3800.CrossRefGoogle Scholar
  121. Zhang, H., Zhang, D., & Ray, K. (2003). A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. Journal of Mass Spectrometry, 38, 1110–1112.PubMedCrossRefGoogle Scholar
  122. Zhang, H., Zhang, D., Ray, K., & Zhu, M. (2009). Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. Journal of Mass Spectrometry, 44, 999–1016.PubMedCrossRefGoogle Scholar
  123. Zhang, H., Zhu, M., Ray, K. L., Ma, L., & Zhang, D. (2008). Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite detection. Rapid Communications in Mass Spectrometry, 22, 2082–2088.PubMedCrossRefGoogle Scholar
  124. Zhou, J., Weber, R., Allwood, J. W., Mistrik, R., Zhu, Z., Ji, Z., et al. (2014). HAMMER: Automated operation of mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics, 30(4), 581–583.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhu, M., Ma, L., Zhang, D., Ray, K., Zhao, W., Humphreys, W. G., et al. (2006). Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metabolism and Disposition, 34, 1722–1733.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Estelle Rathahao-Paris
    • 1
    Email author
  • Sandra Alves
    • 2
  • Christophe Junot
    • 3
  • Jean-Claude Tabet
    • 2
  1. 1.UMR Ingénierie Procédés AlimentsAgroParisTech, Inra, Université Paris-SaclayMassyFrance
  2. 2.Equipe de Spectrométrie de Masse, Institut Parisien de Chimie Moléculaire, UMR 8232Université Pierre et Marie CurieParisFrance
  3. 3.Laboratoire d’Etude du Métabolisme des Médicaments, DSV/iBiTec-S/SPI, CEA/SaclayMetaboHUB-ParisGif-Sur-Yvette CedexFrance

Personalised recommendations