, Volume 11, Issue 6, pp 1792–1801 | Cite as

Aspartate metabolism and pyruvate homeostasis triggered by oxidative stress in Pseudomonas fluorescens: a functional metabolomic study

  • Azhar Alhasawi
  • Martine Leblanc
  • Nishma D. Appanna
  • Christopher Auger
  • Vasu D. AppannaEmail author
Original Article


There is mounting evidence that metabolic reprogramming is critical for the survival of organisms exposed to changing and stressed environments. Using the soil microbe Pseudomonas fluorescens as a model system, we demonstrate that the metabolic networks aimed at the conversion of aspartate into pyruvate are enhanced in the presence of hydrogen peroxide (H2O2). The metabolites pyruvate, oxaloacetate and acetate were increased in the treated cultures as measured by HPLC. Enzymes such as aspartate transaminase and phosphoenolpyruvate carboxylase (PEPC) that mediate the conversion of aspartate to phosphoenolpyruvate (PEP) were up-regulated. This high-energy phosphate was readily converted into ATP, a process facilitated by the increased activity of pyruvate orthophosphate dikinase (PPDK) and phosphoenolpyruvate synthase (PEPS) as oxidative phosphorylation was severely compromised. The ensuing formation of pyruvate readily detoxified reactive oxygen species with the concomitant formation of acetate. This H2O2-induced metabolic reconfiguration not only helps generate the antioxidants necessary to thwart oxidative stress but also powers the formation of energy.


Pyruvate Antioxidant Metabolic networks Pyruvate synthase Energy 



Aspartate lyase


Aspartate transaminase


Adenylate kinase


Cell free extract


Glucose 6-phosphate dehydrogenase


Hydrogen peroxide


Isocitrate dehydrogenase


Malate dehydrogenase


Malic enzyme


Oxidative phosphorylation


Phosphoenolpyruvate carboxylase


Phosphoenolpyruvate synthase


Pyruvate orthophosphate dikinase


Reactive oxygen species


Reduced nicotinamide adenine dinucleotide phosphate


Tricarboxylic acid



This study was funded by Laurentian University and the Northern Ontario Heritage Fund. Azhar Alhasawi is a recipient of funding from the Ministry of Higher Education of Saudi Arabia.

Compliance with ethical standards

Conflict of Interest

All authors declare that they have no conflict of interest.

Research involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11306_2015_841_MOESM1_ESM.tif (2.2 mb)
Supplementary material 1 (TIFF 2296 kb)


  1. Alhasawi, A., Auger, C., Appanna, V. P., Chahma, M., & Appanna, V. D. (2014). Zinc toxicity and ATP production in Pseudomonas fluorescens. Journal of Applied Microbilogy, 117, 65–73.CrossRefGoogle Scholar
  2. Anderson, S., Appanna, V. D., Huang, J., & Viswanatha, T. (1992). A novel role for calcite in calcium homeostasis. FEBS Letters, 308, 94–96.CrossRefPubMedGoogle Scholar
  3. Appanna, V. D., Gazso, L. G., & Pierre, M. S. (1996). Multiple-metal tolerance in Pseudomonas fluorescens and its biotechnological significance. Journal of Biotechnology, 52, 75–80.CrossRefGoogle Scholar
  4. Appanna, V. D., & Preston, C. M. (1987). Manganese elicits the synthesis of a novel exopolysaccharide in an artic Rhizobium. FEBS Letters, 215, 79–82.CrossRefGoogle Scholar
  5. Arora, A., Sairam, R. K., & Srivastava, G. C. (2002). Oxidative stress and antioxidative system in plants. Current Science, 82, 1227–1238.Google Scholar
  6. Auger, C., & Appanna, V. (2014). A novel ATP-generating machinery to counter nitrosative stress is mediated by substrate-level phosphorylation. Biochimica et Biophysica Acta, 1850, 43–50.CrossRefPubMedGoogle Scholar
  7. Auger, C., Appanna, V., Castonguay, Z., Han, S., & Appanna, V. D. (2012). A facile electrophoretic technique to monitor phosphoenolpyruvate-dependent kinases. Electrophoresis, 33, 1095–1101.CrossRefPubMedGoogle Scholar
  8. Auger, C., Lemire, J., Cecchini, D., Bignucolo, A., & Appanna, V. D. (2011). The metabolic reprogramming evoked by nitrosative stress triggers the anaerobic utilization of citrate in Pseudomonas fluorescens. PLoS One, 6, e28469.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aydin, S., Yargicoglu, P., Derin, N., Aliciguzel, Y., Abidin, İ., & Agar, A. (2005). The effect of chronic restraint stress and sulfite on visual evoked potentials (VEPs): Relation to lipid peroxidation. Food and Chemical Toxicology, 43, 1093–1101.CrossRefPubMedGoogle Scholar
  10. Beriault, R., Hamel, R., Chenier, D., Mailloux, R. J., Joly, H., & Appanna, V. D. (2007). The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic. BioMetals, 20, 165–176.CrossRefPubMedGoogle Scholar
  11. Bignucolo, A., Appanna, V. P., Thomas, S. C., Auger, C., Han, S., Omri, A., & Appanna, V. D. (2013). Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: Enhanced production of pyruvate. Journal of Biotechnology, 167, 309–315.CrossRefPubMedGoogle Scholar
  12. Bradford, M. M. (1976). A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMedGoogle Scholar
  13. Bruno-Bárcena, J. M., Azcárate-Peril, M. A., & Hassan, H. M. (2010). Role of antioxidant enzymes in bacterial resistance to organic acids. Applied and Environment Microbiology, 76, 2747–2753.CrossRefGoogle Scholar
  14. Chenier, D., Beriault, R., Mailloux, R., Baquie, M., Abramia, G., Lemire, J., & Appanna, V. D. (2008). Involvement of fumarase C and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells invoked by aluminum and gallium toxicity. Applied and Environment Microbiology, 74, 3977–3984.CrossRefGoogle Scholar
  15. Chubukov, V., Gerosa, L., Kochanowski, K., & Sauer, U. (2014). Coordination of microbial metabolism. Nature Reviews Microbiology, 12, 327–340.CrossRefPubMedGoogle Scholar
  16. Coustou, V., Besteiro, S., Biran, M., Diolez, P., Bouchaud, V., Voisin, P., et al. (2003). ATP generation in the Trypanosoma brucei procyclic form: Cytosolic substrate level is essential, but not oxidative phosphorylation. Journal of Biological Chemistry, 278, 49625–49635.CrossRefPubMedGoogle Scholar
  17. Esposito, E., Capasso, M., di Tomasso, N., Corona, C., Pellegrini, F., Uncini, A., & Sensi, S. L. (2007). Antioxidant strategies based on tomato-enriched food or pyruvate do not affect disease onset and survival in an animal model of amyotrophic lateral sclerosis. Brain Research, 1168, 90–96.CrossRefPubMedGoogle Scholar
  18. Filomeni, G., De Zio, D., & Cecconi, F. (2014). Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death and Differentiation, 2014, 1–12.Google Scholar
  19. Forrester, M. T., & Foster, M. W. (2012). Protection from nitrosative stress: A central role for microbial flavohemoglobin. Free Radical Biology and Medicine, 52, 1620–1633.CrossRefPubMedGoogle Scholar
  20. Friedberg, E. C. (2003). DNA damage and repair. Nature, 421, 436–440.CrossRefPubMedGoogle Scholar
  21. Ganesan, B., Seefeldt, K., & Weimer, B. C. (2004). Fatty acid production from amino acids and α-keto acids by Brevibacterium linens BL2. Applied and Environment Microbiology, 70, 6385–6393.CrossRefGoogle Scholar
  22. Graf, E., & Penniston, J. T. (1980). Method for determination of hydrogen peroxide, with its application illustrated by glucose assay. Clinical Chemistry, 26, 658–660.PubMedGoogle Scholar
  23. Han, S., Auger, C., Appanna, V., Lemire, J., Castonguay, Z., & Appanna, V. D. (2012). A blue native polyacrylamide gel electrophoretic technology to probe the functional proteomics mediating nitrogen homeostasis in Pseudomonas fluorescens. Journal of Microbiol Methods, 90, 206–210.CrossRefGoogle Scholar
  24. Han, G. D., Zhang, S., Mashall, D. J., Ke, C. H., & Dong, Y. W. (2013). Metabolic energy sensors (AMPK and SIRT1), protein carbonylation and cardiac failure as biomarkers of thermal stress in an intertidal limpet: Linking energetic allocation with environmental temperature during aerial emersion. The Journal of Experimental Biology, 216, 3273–3282.CrossRefPubMedGoogle Scholar
  25. Kim, J. Y., Lee, Y. A., Wittmann, C., & Park, J. B. (2013). Production of non-proteinogenic amino acids from α-keto acid precursors with recombinant Corynebacterium glutamicum. Biotechnology and Bioengineering, 110, 2846–2855.CrossRefPubMedGoogle Scholar
  26. Lemire, J., Auger, C., Mailloux, R., & Appanna, V. D. (2014). Mitochondrial lactate metabolism is involved in antioxidative defense in human astrocytoma cells. Journal of Neuroscience Research, 92, 464–475.CrossRefPubMedGoogle Scholar
  27. Lemire, J., Kumar, P., Mailloux, R., Cossar, K., & Appanna, V. D. (2008). Metabolic adaptation and oxaloacetate homeostasis in P. fluorescens exposed to aluminum toxicity. Journal of Basic Microbiology, 48, 252–259.CrossRefPubMedGoogle Scholar
  28. Lemire, J., Milandu, Y., Auger, C., Bignucolo, A., Appanna, V. P., & Appanna, V. D. (2010). Histidine is a source of the anti-oxidant a-ketoglutarate in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiology Letters, 309, 170–177.PubMedGoogle Scholar
  29. Li, S. F., Liu, H. X., Zhang, Y. B., Yan, Y. C., & Li, Y. P. (2010). The protective effects of α-ketoacids against oxidative stress on rat spermatozoa in vitro. Asian Journal of Andrology, 12, 247–256.CrossRefPubMedGoogle Scholar
  30. Liu, H., Sun, Y., Ramos, K. R., Nisola, G. M., Valdehuesa, K. N., Lee, W. K., et al. (2013). Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli. PLoS One, 8, e83290.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mailloux, R. J., Bériault, R., Lemire, J., Singh, R., Chénier, D. R., Hamel, R. D., & Appanna, V. D. (2007). The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One, 2, e690.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mailloux, R. J., Darwich, R., Lemire, J., & Appanna, V. (2008). The monitoring of nucleotide diphosphate kinase activity by blue native polyacrylamide gel electrophoresis. Electrophoresis, 29, 1484–1489.CrossRefPubMedGoogle Scholar
  33. Mailloux, R. J., Singh, R., Brewer, G., Auger, C., Lemire, J., & Appanna, V. D. (2009). α-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant α-ketoglutarate during oxidative stress in Pseudomonas fluorescens. Journal of Bacteriology, 191, 3804–3810.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Masip, L., Veeravalli, K., & Georgiou, G. (2006). The many faces of glutathione in bacteria. Antioxidants and Redox Signaling, 8, 753–762.CrossRefPubMedGoogle Scholar
  35. Navari-Izzo, F., Quartacci, M. F., & Sgherri, C. (2002). Lipoic acid: A unique antioxidant in the detoxification of activated oxygen species. Plant Physiology and Biochemistry, 40, 463–470.CrossRefGoogle Scholar
  36. Noctor, G. (2006). Metabolic signalling in defence and stress: The central roles of soluble redox couples. Plant, Cell and Environment, 29, 409–425.CrossRefPubMedGoogle Scholar
  37. Puntel, R. L., Roos, D. H., Grotto, D., Garcia, S. C., Nogueira, C. W., & Batista Teixeira Rocha, J. (2007). Antioxidant properties of krebs cycle intermediates against malonate pro-oxidant activity in vitro: A comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates. Life Sciences, 81, 51–62.CrossRefPubMedGoogle Scholar
  38. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297, 1551–1555.CrossRefPubMedGoogle Scholar
  39. Sauer, U., & Eikmanns, B. J. (2005). The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, 29, 765–794.CrossRefPubMedGoogle Scholar
  40. Schägger, H., & von Jagow, G. (1991). Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Analytical Biochemistry, 199, 223–231.CrossRefPubMedGoogle Scholar
  41. Singh, R., Mailloux, R. J., Puiseux-Dao, S., & Appanna, V. D. (2007). Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. Journal of Bacteriology, 189, 6665–6675.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Singh, R. B., Middaugh, R., Hamel, J., Chenier, R., Appanna, D., & Kalyuzhnyi, V. D. S. (2005). Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production. Extremophiles, 9, 367–373.CrossRefPubMedGoogle Scholar
  43. Smirnov, S. V., Sokolov, P. M., Kodera, T., Sugiyama, M., Hibi, M., Shimizu, S., & Ogawa, J. (2012). A novel family of bacterial dioxygenases that catalyse the hydroxylation of free l-amino acids. FEMS Microbiology Letters, 331, 97–104.CrossRefPubMedGoogle Scholar
  44. Spura, J., Reimer, L. C., Wieloch, P., Schreiber, K., Buchinger, S., & Schomburg, D. (2009). A method for enzyme quenching in microbial metabolome analysis successfully applied to gram-positive and gram-negative bacteria and yeast. Analytical Biochemistry, 394, 192–201.CrossRefPubMedGoogle Scholar
  45. Takao, M., Aburatani, H., Kobayashi, K., & Yasui, A. (1998). Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Research, 26, 2917–2922.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zeller, T., & Klug, G. (2004). Detoxification of hydrogen peroxide and expression of catalase genes in Rhodobacter. Microbiology, 150, 3451–3462.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Azhar Alhasawi
    • 1
  • Martine Leblanc
    • 1
  • Nishma D. Appanna
    • 1
  • Christopher Auger
    • 1
  • Vasu D. Appanna
    • 1
    Email author
  1. 1.Faculty of Science and EngineeringLaurentian UniversitySudburyCanada

Personalised recommendations