The human saliva metabolome

Abstract

Saliva is a clear, watery biofluid produced by the salivary glands to protect and lubricate the oral cavity. While mostly composed of water (99 %), the chemical composition of saliva is known to change quite dramatically in response to a variety of different physiological states, stimuli, insults and stressors. Unfortunately, among the human biofluids typically used in medical testing (such as blood and urine), saliva is rarely used. Given that saliva is the most easily accessible and readily obtained biofluid, this is rather unfortunate. Part of the reluctance to use saliva in medical testing likely has to do with the fact that its chemical composition is not well known. Here, a comprehensive characterization of the human saliva metabolome is presented. Multiple analytical platforms including nuclear magnetic resonance spectroscopy, gas chromatography mass spectrometry, direct flow injection/liquid chromatography mass spectrometry, inductively coupled plasma mass spectrometry, and high performance liquid chromatography were employed to quantify the metabolites that can be commonly detected in human saliva. Using this multiplatform approach, we were able to quantify and/or identify 308 salivary metabolites or metabolite species in human saliva. This experimental work was complemented with computer-aided literature mining that led to the identification and annotation of another 708 salivary metabolites. The combined collection of 853 non-redundant salivary metabolites or metabolite species together with their concentrations, related literature references, and links to their known disease associations are freely available at http://www.hmdb.ca/.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Álvarez-Sánchez, B., Priego-Capote, F., & Luque de Castro, M. D. (2012). Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography-time of flight/mass spectrometry. Journal of Chromatography A, 1248, 178–181.

    Article  PubMed  Google Scholar 

  2. Arakeri, G., Patil, S. G., Ramesh, D. N., Hunasgi, S., & Brennan, P. A. (2013). Evaluation of the possible role of copper ions in drinking water in the pathogenesis of oral submucous fibrosis: A pilot study. British Journal of Oral and Maxillofacial Surgery,. doi:10.1016/j.bjoms.2013.01.010.

    Google Scholar 

  3. Barbosa, F, Jr, Corrêa Rodrigues, M., Buzalaf, M., Krug, F., Gerlach, R., & Tanus-Santos, J. (2006). Evaluation of the use of salivary lead levels as a surrogate of blood lead or plasma lead levels in lead exposed subjects. Archives of Toxicology, 80(10), 633–637. doi:10.1007/s00204-006-0096-y.

    CAS  Article  PubMed  Google Scholar 

  4. Bouatra, S., Aziat, F., Mandal, R., et al. (2013). The human urine metabolome. PLoS ONE, 8(9), e73076. doi:10.1371/journal.pone.0073076.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Burt, B. A. (2006). The use of sorbitol- and xylitol-sweetened chewing gum in caries control. Journal of the American Dental Association, 137(2), 190–196.

    Article  PubMed  Google Scholar 

  6. Cámpora, P., Bermejo, A. M., Tabernero, M. J., & Fernández, P. (2003). Quantitation of cocaine and its major metabolites in human saliva using gas chromatography-positive chemical ionization-mass spectrometry (GC-PCI-MS). Journal of Analytical Toxicology, 27(5), 270–274.

    Article  PubMed  Google Scholar 

  7. Capote, F. P., Jimenez, J. R., Granados, J. M. M., & de Castro, M. D. L. (2007). Identificaion and determination of fat-soluble vitamins and metabolites in human serum by liquid chromatoghraphy/triple quadrupole mass spectrometry with multiple reaction monitoring. Rapid Communications in Mass Spectrometry, 21, 1745–1754.

    CAS  Article  Google Scholar 

  8. Cerutti, P. A., & Trump, B. F. (1991). Inflammation and oxidative stress in carcinogenesis. Cancer Cells, 3, 1–7.

    CAS  PubMed  Google Scholar 

  9. Chatzimichalakis, P. F., Samanidou, V. F., Verpoorte, R., & Papadoyannis, I. N. (2004). Development of a validated HPLC method for the determination of B-complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. Journal of Separation Science, 27, 1181–1188.

    CAS  Article  PubMed  Google Scholar 

  10. Chiappin, S., Antonelli, G., Gatti, R., & De Palo, E. F. (2007). Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clinica Chimica Acta, 383(1–2), 30–40. doi:10.1016/j.cca.2007.04.011.

    CAS  Article  Google Scholar 

  11. Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48(4), 323–327.

    CAS  Article  PubMed  Google Scholar 

  12. Cross, S. E., Kreth, J., Wali, R. P., Sullivan, R., Shi, W., & Gimzewski, J. K. (2009). Evaluation of bacteria-induced enamel demineralization using optical profilometry. Dental Materials, 25(12), 1517–1526. doi:10.1016/j.dental.2009.07.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C., & Brown, S. A. (2012). The human circadian metabolome. Proceedings of the National Academy of Sciences, 109(7), 2625–2629. doi:10.1073/pnas.1114410109.

    CAS  Article  Google Scholar 

  14. de Almeida Pdel, V., Gregio, A. M., Machado, M. A., de Lima, A. A., & Azevedo, L. R. (2008). Saliva composition and functions: A comprehensive review. The Journal of Contemporary Dental Practice, 9(3), 72–80.

    PubMed  Google Scholar 

  15. Denny, P., Hagen, F. K, Hardt, M., et al. (2008). The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. Journal of Proteome Research, 7(5), 1994–2006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Distler, W., & Kroncke, A. (1981). The lactate metabolism of the oral bacterium Veillonella from human saliva. Archives of Oral Biology, 26(8), 657–661.

    CAS  Article  PubMed  Google Scholar 

  17. Fidalgo, T. K. S., Freitas-Fernandes, L. B., Angeli, R., et al. (2013). Salivary metabolite signatures of children with and without dental caries lesions. Metabolomics, 9(3), 657–666.

    CAS  Article  Google Scholar 

  18. Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludäscher, & L. Raschid (Eds.), Data integration in the life sciences (Vol. 3615, pp. 224–239). Lecture notes in computer science. Berlin: Springer.

  19. Fischer, D., & Ship, J. A. (1999). Effect of age on variability of parotid salivary gland flow rates over time. Age and Ageing, 28(6), 557–561.

    CAS  Article  PubMed  Google Scholar 

  20. Fiskerstrand, T., Refsum, H., Kvalheim, G., & Ueland, P. M. (1993). Homocysteine and other thiols in plasma and urine: Automated determination and sample stability. Clinical Chemistry, 39(2), 263–271.

    CAS  PubMed  Google Scholar 

  21. Goldberg, S., Kozlovsky, A., Gordon, D., Gelernter, I., Sintov, A., & Rosenberg, M. (1994). Cadaverine as a putative component of oral malodor. Journal of Dental Research, 73(6), 1168–1172.

    CAS  Article  PubMed  Google Scholar 

  22. Guinan, T., Ronci, M., Kobus, H., & Voelcker, N. H. (2012). Rapid detection of illicit drugs in neat saliva using desorption/ionization on porous silicon. Talanta, 99, 791–798. doi:10.1016/j.talanta.2012.07.029.

    CAS  Article  PubMed  Google Scholar 

  23. Gwinner, W., & Gröne, H. J. (2000). Role of reactive oxygen species in glomerulonephritis. Nephrology, Dialysis, Transplantation, 15(8), 1127–1132.

    CAS  Article  PubMed  Google Scholar 

  24. Haug, K., Salek, R. M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek, M., et al. (2013). MetaboLights–an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 41(Database issue), D781–D786. doi:10.1093/nar/gks1004.

    CAS  Article  PubMed  Google Scholar 

  25. Heitland, P., & Köster, H. D. (2006). Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clinical Chimica Acta, 365(1–2), 310–318.

    CAS  Article  Google Scholar 

  26. Hu, G., & Sandham, H. J. (1972). Streptococcal utilization of lactic acid and its effect on pH. Archives of Oral Biology, 17(4), 729–743.

    CAS  Article  PubMed  Google Scholar 

  27. Jia, J., Sun, Y., Yang, H., et al. (2012). Effect of human saliva on wound healing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 26(5), 563–566.

    PubMed  Google Scholar 

  28. Kamodyova, N., Tothova, L., & Celec, P. (2013). Salivary markers of oxidative stress and antioxidant status: influence of external factors. Disease Markers, 34(5), 313–321. doi:10.3233/dma-130975.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Kaufman, E., & Lamster, I. B. (2002). The diagnostic applications of saliva—a review. Critical Reviews in Oral Biology & Medicine, 13(2), 197–212.

    Article  Google Scholar 

  30. Kim, Y. J., Kim, Y. K., & Kho, H. S. (2010). Effects of smoking on trace metal levels in saliva. Oral Diseases, 16(8), 823–830. doi:10.1111/j.1601-0825.2010.01698.x.

    Article  PubMed  Google Scholar 

  31. Kochanska, B., Smolenski, R. T., & Knap, N. (2000). Determination of adenine nucleotides and their metabolites in human saliva. Acta Biochimica Polonica, 47(3), 877–879.

    CAS  PubMed  Google Scholar 

  32. Korithoski, B., Krastel, K., & Cvitkovitch, D. G. (2005). Transport and metabolism of citrate by Streptococcus mutans. Journal of Bacteriology, 187(13), 4451–4456. doi:10.1128/jb.187.13.4451-4456.2005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Kusmierek, K., & Bald, E. (2008). Measurement of reduced and total mercaptamine in urine using liquid chromatography with ultraviolet detection. Biomedical Chromatography, 22(4), 441–445. doi:10.1002/bmc.959.

    CAS  Article  PubMed  Google Scholar 

  34. Larsen, M. J., Jensen, A. F., Madsen, D. M., & Pearce, E. I. (1999). Individual variations of pH, buffer capacity, and concentrations of calcium and phosphate in unstimulated whole saliva. Archives of Oral Biology, 44(2), 111–117.

    CAS  Article  PubMed  Google Scholar 

  35. Lee, S., Pagoria, D., Raigrodski, A., et al. (2007). Effects of combinations of ROS scavengers on oxidative DNA damage caused by visible-light-activated camphorquinone/N, N-dimethyl-p-toluidine. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 83(2), 391–399.

    Article  PubMed  Google Scholar 

  36. Linke, H. A., Moss, S. J., Arav, L., & Chiu, P. M. (1997). Intra-oral lactic acid production during clearance of different foods containing various carbohydrates. Zeitschrift fur Ernahrungswissenschaft, 36(2), 191–197.

    CAS  Article  PubMed  Google Scholar 

  37. Magalhaes, A. C., Wiegand, A., Rios, D., Buzalaf, M. A., & Lussi, A. (2011). Fluoride in dental erosion. Monographs in Oral Science, 22, 158–170. doi:10.1159/000325167.

    Article  PubMed  Google Scholar 

  38. Mandal, R., Guo, A. C., Chaudhary, K. K., et al. (2012). Multi-platform characterization of the human cerebrospinal fluid metabolome: A comprehensive and quantitative update. Genome Medicine, 4(4), 38. doi:10.1186/gm337.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Marcotte, H., & Lavoie, M. C. (1998). Oral microbial ecology and the role of salivary immunoglobulin A. Microbiology and Molecular Biology Reviews, 62(1), 71–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin, H. J., Riazanskaia, S., & Thomas, C. L. (2012). Sampling and characterisation of volatile organic compound profiles in human saliva using a polydimethylsiloxane coupon placed within the oral cavity. Analyst, 137(16), 3627–3634. doi:10.1039/c2an35432b.

    CAS  Article  PubMed  Google Scholar 

  41. Morenkova, S. A. (2004). Comparative analysis of dependence of saliva sorbitol and fructosamine levels on blood glucose level in patients with diabetes. Biomed Khim, 50(6), 612–614.

    CAS  PubMed  Google Scholar 

  42. Morris-Wiman, J., Sego, R., Brinkley, L., & Dolce, C. (2000). The effects of sialoadenectomy and exogenous EGF on taste bud morphology and maintenance. Chemical Senses, 25(1), 9–19. doi:10.1093/chemse/25.1.9.

    CAS  Article  PubMed  Google Scholar 

  43. Nakamura, Y., Kodama, H., Satoh, T., et al. (2010). Diurnal changes in salivary amino acid concentrations. Vivo, 24(6), 837–842.

    CAS  Google Scholar 

  44. Oudhoff, M. J., Bolscher, J. G. M., Nazmi, K., et al. (2008). Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. The FASEB Journal, 22(11), 3805–3812. doi:10.1096/fj.08-112003.

    CAS  Article  PubMed  Google Scholar 

  45. Park, Y. D., Jang, J. H., Oh, Y. J., & Kwon, H. J. (2014). Analyses of organic acids and inorganic anions and their relationship in human saliva before and after glucose intake. Archives of Oral Biology, 59(1), 1–11. doi:10.1016/j.archoralbio.2013.10.006.

    CAS  Article  PubMed  Google Scholar 

  46. Persson, S., Edlund, M. B., Claesson, R., & Carlsson, J. (1990). The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiology and Immunology, 5(4), 195–201.

    CAS  Article  PubMed  Google Scholar 

  47. Piermarini, S., Volpe, G., Federico, R., Moscone, D., & Palleschi, G. (2010). Detection of biogenic amines in human saliva using a screen-printed biosensor. Analytical Letters, 43(7–8), 1310–1316. doi:10.1080/00032710903518724.

    CAS  Article  Google Scholar 

  48. Pittendrigh, C. S. (1993). Temporal organization: reflections of a Darwinian clock-watcher. Annual Review of Physiology, 55, 16–54. doi:10.1146/annurev.ph.55.030193.000313.

    CAS  Article  PubMed  Google Scholar 

  49. Pobozy, E., Czarkowska, W., & Trojanowicz, M. (2006). Determination of amino acids in saliva using capillary electrophoresis with fluorimetric detection. Journal of Biochemical and Biophysical Methods, 67(1), 37–47.

    CAS  Article  PubMed  Google Scholar 

  50. Psychogios, N., Hau, D. D., Peng, J., et al. (2011). The human serum metabolome. PLoS ONE, 6(2), e16957. doi:10.1371/journal.pone.0016957.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Rolla, G., Ciardi, J. E., & Bowen, W. H. (1983). Identification of IgA, IgG, lysozyme, albumin, alpha-amylase and glucosyltransferase in the protein layer adsorbed to hydroxyapatite from whole saliva. Scandinavian Journal of Dental Research, 91(3), 186–190.

    CAS  PubMed  Google Scholar 

  52. Sanchez-Pablo, M. A., Gonzalez-Garcia, V., & del Castillo-Rueda, A. (2012). Study of total stimulated saliva flow and hyperpigmentation in the oral mucosa of patients diagnosed with hereditary hemochromatosis. Series of 25 cases. Medicina Oral, Patología Oral y Cirugía Bucal, 17(1), e45–e49.

    Article  PubMed  Google Scholar 

  53. Shetty, S. R., Babu, S., Kumari, S., Shetty, P., Vijay, R., & Karikal, A. (2012). Evaluation of micronutrient status in serum and saliva of oral submucous fibrosis patients: A clinicopathological study. Indian Journal of Medical and Paediatric Oncology, 33(4), 224–226. doi:10.4103/0971-5851.107087.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Silwood, C. J., Lynch, E., Claxson, A. W., & Grootveld, M. C. (2002). 1H and (13)C NMR spectroscopic analysis of human saliva. Journal of Dental Research, 81(6), 422–427.

    CAS  Article  PubMed  Google Scholar 

  55. Soini, H. A., Klouckova, I., Wiesler, D., et al. (2010). Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. Journal of Chemical Ecology, 36(9), 1035–1042. doi:10.1007/s10886-010-9846-7.

    CAS  Article  PubMed  Google Scholar 

  56. Spielmann, N., & Wong, D. T. (2011). Saliva: diagnostics and therapeutic perspectives. Oral Diseases, 17(4), 345–354.

    Article  Google Scholar 

  57. Spinner, D. S., Cho, I. S., Park, S. Y., et al. (2008). Accelerated prion disease pathogenesis in Toll-like receptor 4 signaling-mutant mice. Journal of Virology, 82(21), 10701–10708. doi:10.1128/JVI.00522-08.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Sugimoto, M., Saruta, J., Matsuki, C., et al. (2013). Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics, 9(2), 454–463. doi:10.1007/s11306-012-0464-y.

    CAS  Article  Google Scholar 

  59. Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6(1), 78–95. doi:10.1007/s11306-009-0178-y.

    CAS  Article  PubMed  Google Scholar 

  60. Takeda, I., Stretch, C., Barnaby, P., et al. (2009). Understanding the human salivary metabolome. NMR in Biomedicine, 22(6), 577–584. doi:10.1002/nbm.1369.

    CAS  Article  PubMed  Google Scholar 

  61. Toone, R. J., Peacock, O. J., Smith, A. A., et al. (2013). Measurement of steroid hormones in saliva: Effects of sample storage condition. Scandinavian Journal of Clinical and Laboratory Investigation, 73(8), 615–621. doi:10.3109/00365513.2013.835862.

    CAS  Article  PubMed  Google Scholar 

  62. Vakkuri, O. (1985). Diurnal rhythm of melatonin in human saliva. Acta Physiologica Scandinavica, 124(3), 409–412. doi:10.1111/j.1748-1716.1985.tb07676.x.

    CAS  Article  PubMed  Google Scholar 

  63. Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84(3), 531–539.

    CAS  PubMed  Google Scholar 

  64. Wang, D., Fan, L., Zhang, L., et al. (2012). Comparison of the total arsenic concentration between saliva and blood after oral administration of sodium arsenite to rats. Wei Sheng Yan Jiu, 41(6), 947–950.

    CAS  PubMed  Google Scholar 

  65. Ward, M. E., Politzer, I. R., Laseter, J. L., & Alam, S. Q. (1976). Gas chromatographic mass spectrometric evaluation of free organic acids in human saliva. Biomedical Mass Spectrometry, 3(2), 77–80.

    CAS  Article  PubMed  Google Scholar 

  66. Wei, J., Xie, G., Zhou, Z., Shi, P., et al. (2011). Salivary metabolite signatures of oral cancer and leukoplakia. International Journal of Cancer, 129(9), 2207–2217.

    CAS  Article  PubMed  Google Scholar 

  67. Wishart, D. S., Jewison, T., Guo, A. C., et al. (2013). HMDB 3.0–The human metabolome database in 2013. Nucleic Acids Research, 41(Database issue), D801–D807. doi:10.1093/nar/gks1065.

    CAS  Article  PubMed  Google Scholar 

  68. Wishart, D. S., Lewis, M. J., Morrissey, J. A., et al. (2008). The human cerebrospinal fluid metabolome. Journal of Chromatography B, 871(2), 164–173. doi:10.1016/j.jchromb.2008.05.001.

    CAS  Article  Google Scholar 

  69. Wisner, A., Dufour, E., Messaoudi, M., et al. (2006). Human Opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proceedings of the National Academy of Sciences, 103(47), 17979–17984. doi:10.1073/pnas.0605865103.

    CAS  Article  Google Scholar 

  70. Wong, D. T. (2006). Salivary diagnostics powered by nanotechnologies, proteomics and genomics. Journal of the American Dental Association, 137(3), 313–321.

    CAS  Article  PubMed  Google Scholar 

  71. Xia, Y., Peng, C., Zhou, Z., et al. (2012). Clinical significance of saliva urea, creatinine, and uric acid levels in patients with chronic kidney disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 37(11), 1171–1176. doi:10.3969/j.issn.1672-7347.2012.11.016.

    CAS  PubMed  Google Scholar 

  72. Zappacosta, B., Manni, A., Persichilli, S., et al. (2003). HPLC analysis of some sulphur compounds in saliva: Comparison between healthy subjects and periodontopathic patients. Clinica Chimica Acta, 338(1–2), 57–60.

    CAS  Article  Google Scholar 

  73. Zheng, J., Dixon, R. A., & Li, L. (2012). Development of isotope labeling LC-MS for human salivary metabolomics and application to profiling metabolome changes associated with mild cognitive impairment. Analytical Chemistry, 84(24), 10802–10811. doi:10.1021/ac3028307.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this research has been provided by Genome Canada, Genome Alberta, The Canadian Institutes of Health Research, Alberta Innovates, The National Research Council and The National Institute of Nanotechnology. The funders had no role in study design, data collection. data analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David S. Wishart.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study complied with all applicable institutional guidelines and terms of the Declaration of Helsinki of 1975 (as revised in 2008) for investigation of human subjects. The research involving human subjects was based on their informed consent. All participants agreed to participate in this study and to contribute saliva samples for metabolomic analysis. All samples were collected in accordance with the ethical guidelines mandated by the University of Alberta as approved by the University’s Health Research Ethics Board.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dame, Z.T., Aziat, F., Mandal, R. et al. The human saliva metabolome. Metabolomics 11, 1864–1883 (2015). https://doi.org/10.1007/s11306-015-0840-5

Download citation

Keywords

  • Human saliva
  • Quantitative
  • Multi-platform
  • Metabolomics
  • NMR
  • LC–MS