, Volume 11, Issue 6, pp 1864–1883 | Cite as

The human saliva metabolome

  • Zerihun T. Dame
  • Farid Aziat
  • Rupasri Mandal
  • Ram Krishnamurthy
  • Souhaila Bouatra
  • Shima Borzouie
  • An Chi Guo
  • Tanvir Sajed
  • Lu Deng
  • Hong Lin
  • Philip Liu
  • Edison Dong
  • David S. Wishart
Original Article


Saliva is a clear, watery biofluid produced by the salivary glands to protect and lubricate the oral cavity. While mostly composed of water (99 %), the chemical composition of saliva is known to change quite dramatically in response to a variety of different physiological states, stimuli, insults and stressors. Unfortunately, among the human biofluids typically used in medical testing (such as blood and urine), saliva is rarely used. Given that saliva is the most easily accessible and readily obtained biofluid, this is rather unfortunate. Part of the reluctance to use saliva in medical testing likely has to do with the fact that its chemical composition is not well known. Here, a comprehensive characterization of the human saliva metabolome is presented. Multiple analytical platforms including nuclear magnetic resonance spectroscopy, gas chromatography mass spectrometry, direct flow injection/liquid chromatography mass spectrometry, inductively coupled plasma mass spectrometry, and high performance liquid chromatography were employed to quantify the metabolites that can be commonly detected in human saliva. Using this multiplatform approach, we were able to quantify and/or identify 308 salivary metabolites or metabolite species in human saliva. This experimental work was complemented with computer-aided literature mining that led to the identification and annotation of another 708 salivary metabolites. The combined collection of 853 non-redundant salivary metabolites or metabolite species together with their concentrations, related literature references, and links to their known disease associations are freely available at


Human saliva Quantitative Multi-platform Metabolomics NMR LC–MS 



Funding for this research has been provided by Genome Canada, Genome Alberta, The Canadian Institutes of Health Research, Alberta Innovates, The National Research Council and The National Institute of Nanotechnology. The funders had no role in study design, data collection. data analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study complied with all applicable institutional guidelines and terms of the Declaration of Helsinki of 1975 (as revised in 2008) for investigation of human subjects. The research involving human subjects was based on their informed consent. All participants agreed to participate in this study and to contribute saliva samples for metabolomic analysis. All samples were collected in accordance with the ethical guidelines mandated by the University of Alberta as approved by the University’s Health Research Ethics Board.

Supplementary material

11306_2015_840_MOESM1_ESM.doc (66 kb)
Supplementary material 1 (DOC 66 kb)


  1. Álvarez-Sánchez, B., Priego-Capote, F., & Luque de Castro, M. D. (2012). Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography-time of flight/mass spectrometry. Journal of Chromatography A, 1248, 178–181.CrossRefPubMedGoogle Scholar
  2. Arakeri, G., Patil, S. G., Ramesh, D. N., Hunasgi, S., & Brennan, P. A. (2013). Evaluation of the possible role of copper ions in drinking water in the pathogenesis of oral submucous fibrosis: A pilot study. British Journal of Oral and Maxillofacial Surgery,. doi: 10.1016/j.bjoms.2013.01.010.Google Scholar
  3. Barbosa, F, Jr, Corrêa Rodrigues, M., Buzalaf, M., Krug, F., Gerlach, R., & Tanus-Santos, J. (2006). Evaluation of the use of salivary lead levels as a surrogate of blood lead or plasma lead levels in lead exposed subjects. Archives of Toxicology, 80(10), 633–637. doi: 10.1007/s00204-006-0096-y.CrossRefPubMedGoogle Scholar
  4. Bouatra, S., Aziat, F., Mandal, R., et al. (2013). The human urine metabolome. PLoS ONE, 8(9), e73076. doi: 10.1371/journal.pone.0073076.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burt, B. A. (2006). The use of sorbitol- and xylitol-sweetened chewing gum in caries control. Journal of the American Dental Association, 137(2), 190–196.CrossRefPubMedGoogle Scholar
  6. Cámpora, P., Bermejo, A. M., Tabernero, M. J., & Fernández, P. (2003). Quantitation of cocaine and its major metabolites in human saliva using gas chromatography-positive chemical ionization-mass spectrometry (GC-PCI-MS). Journal of Analytical Toxicology, 27(5), 270–274.CrossRefPubMedGoogle Scholar
  7. Capote, F. P., Jimenez, J. R., Granados, J. M. M., & de Castro, M. D. L. (2007). Identificaion and determination of fat-soluble vitamins and metabolites in human serum by liquid chromatoghraphy/triple quadrupole mass spectrometry with multiple reaction monitoring. Rapid Communications in Mass Spectrometry, 21, 1745–1754.CrossRefGoogle Scholar
  8. Cerutti, P. A., & Trump, B. F. (1991). Inflammation and oxidative stress in carcinogenesis. Cancer Cells, 3, 1–7.PubMedGoogle Scholar
  9. Chatzimichalakis, P. F., Samanidou, V. F., Verpoorte, R., & Papadoyannis, I. N. (2004). Development of a validated HPLC method for the determination of B-complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. Journal of Separation Science, 27, 1181–1188.CrossRefPubMedGoogle Scholar
  10. Chiappin, S., Antonelli, G., Gatti, R., & De Palo, E. F. (2007). Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clinica Chimica Acta, 383(1–2), 30–40. doi: 10.1016/j.cca.2007.04.011.CrossRefGoogle Scholar
  11. Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48(4), 323–327.CrossRefPubMedGoogle Scholar
  12. Cross, S. E., Kreth, J., Wali, R. P., Sullivan, R., Shi, W., & Gimzewski, J. K. (2009). Evaluation of bacteria-induced enamel demineralization using optical profilometry. Dental Materials, 25(12), 1517–1526. doi: 10.1016/ Scholar
  13. Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C., & Brown, S. A. (2012). The human circadian metabolome. Proceedings of the National Academy of Sciences, 109(7), 2625–2629. doi: 10.1073/pnas.1114410109.CrossRefGoogle Scholar
  14. de Almeida Pdel, V., Gregio, A. M., Machado, M. A., de Lima, A. A., & Azevedo, L. R. (2008). Saliva composition and functions: A comprehensive review. The Journal of Contemporary Dental Practice, 9(3), 72–80.PubMedGoogle Scholar
  15. Denny, P., Hagen, F. K, Hardt, M., et al. (2008). The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. Journal of Proteome Research, 7(5), 1994–2006.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Distler, W., & Kroncke, A. (1981). The lactate metabolism of the oral bacterium Veillonella from human saliva. Archives of Oral Biology, 26(8), 657–661.CrossRefPubMedGoogle Scholar
  17. Fidalgo, T. K. S., Freitas-Fernandes, L. B., Angeli, R., et al. (2013). Salivary metabolite signatures of children with and without dental caries lesions. Metabolomics, 9(3), 657–666.CrossRefGoogle Scholar
  18. Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludäscher, & L. Raschid (Eds.), Data integration in the life sciences (Vol. 3615, pp. 224–239). Lecture notes in computer science. Berlin: Springer.Google Scholar
  19. Fischer, D., & Ship, J. A. (1999). Effect of age on variability of parotid salivary gland flow rates over time. Age and Ageing, 28(6), 557–561.CrossRefPubMedGoogle Scholar
  20. Fiskerstrand, T., Refsum, H., Kvalheim, G., & Ueland, P. M. (1993). Homocysteine and other thiols in plasma and urine: Automated determination and sample stability. Clinical Chemistry, 39(2), 263–271.PubMedGoogle Scholar
  21. Goldberg, S., Kozlovsky, A., Gordon, D., Gelernter, I., Sintov, A., & Rosenberg, M. (1994). Cadaverine as a putative component of oral malodor. Journal of Dental Research, 73(6), 1168–1172.CrossRefPubMedGoogle Scholar
  22. Guinan, T., Ronci, M., Kobus, H., & Voelcker, N. H. (2012). Rapid detection of illicit drugs in neat saliva using desorption/ionization on porous silicon. Talanta, 99, 791–798. doi: 10.1016/j.talanta.2012.07.029.CrossRefPubMedGoogle Scholar
  23. Gwinner, W., & Gröne, H. J. (2000). Role of reactive oxygen species in glomerulonephritis. Nephrology, Dialysis, Transplantation, 15(8), 1127–1132.CrossRefPubMedGoogle Scholar
  24. Haug, K., Salek, R. M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek, M., et al. (2013). MetaboLights–an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 41(Database issue), D781–D786. doi: 10.1093/nar/gks1004.CrossRefPubMedGoogle Scholar
  25. Heitland, P., & Köster, H. D. (2006). Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clinical Chimica Acta, 365(1–2), 310–318.CrossRefGoogle Scholar
  26. Hu, G., & Sandham, H. J. (1972). Streptococcal utilization of lactic acid and its effect on pH. Archives of Oral Biology, 17(4), 729–743.CrossRefPubMedGoogle Scholar
  27. Jia, J., Sun, Y., Yang, H., et al. (2012). Effect of human saliva on wound healing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 26(5), 563–566.PubMedGoogle Scholar
  28. Kamodyova, N., Tothova, L., & Celec, P. (2013). Salivary markers of oxidative stress and antioxidant status: influence of external factors. Disease Markers, 34(5), 313–321. doi: 10.3233/dma-130975.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kaufman, E., & Lamster, I. B. (2002). The diagnostic applications of saliva—a review. Critical Reviews in Oral Biology & Medicine, 13(2), 197–212.CrossRefGoogle Scholar
  30. Kim, Y. J., Kim, Y. K., & Kho, H. S. (2010). Effects of smoking on trace metal levels in saliva. Oral Diseases, 16(8), 823–830. doi: 10.1111/j.1601-0825.2010.01698.x.CrossRefPubMedGoogle Scholar
  31. Kochanska, B., Smolenski, R. T., & Knap, N. (2000). Determination of adenine nucleotides and their metabolites in human saliva. Acta Biochimica Polonica, 47(3), 877–879.PubMedGoogle Scholar
  32. Korithoski, B., Krastel, K., & Cvitkovitch, D. G. (2005). Transport and metabolism of citrate by Streptococcus mutans. Journal of Bacteriology, 187(13), 4451–4456. doi: 10.1128/jb.187.13.4451-4456.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kusmierek, K., & Bald, E. (2008). Measurement of reduced and total mercaptamine in urine using liquid chromatography with ultraviolet detection. Biomedical Chromatography, 22(4), 441–445. doi: 10.1002/bmc.959.CrossRefPubMedGoogle Scholar
  34. Larsen, M. J., Jensen, A. F., Madsen, D. M., & Pearce, E. I. (1999). Individual variations of pH, buffer capacity, and concentrations of calcium and phosphate in unstimulated whole saliva. Archives of Oral Biology, 44(2), 111–117.CrossRefPubMedGoogle Scholar
  35. Lee, S., Pagoria, D., Raigrodski, A., et al. (2007). Effects of combinations of ROS scavengers on oxidative DNA damage caused by visible-light-activated camphorquinone/N, N-dimethyl-p-toluidine. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 83(2), 391–399.CrossRefPubMedGoogle Scholar
  36. Linke, H. A., Moss, S. J., Arav, L., & Chiu, P. M. (1997). Intra-oral lactic acid production during clearance of different foods containing various carbohydrates. Zeitschrift fur Ernahrungswissenschaft, 36(2), 191–197.CrossRefPubMedGoogle Scholar
  37. Magalhaes, A. C., Wiegand, A., Rios, D., Buzalaf, M. A., & Lussi, A. (2011). Fluoride in dental erosion. Monographs in Oral Science, 22, 158–170. doi: 10.1159/000325167.CrossRefPubMedGoogle Scholar
  38. Mandal, R., Guo, A. C., Chaudhary, K. K., et al. (2012). Multi-platform characterization of the human cerebrospinal fluid metabolome: A comprehensive and quantitative update. Genome Medicine, 4(4), 38. doi: 10.1186/gm337.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marcotte, H., & Lavoie, M. C. (1998). Oral microbial ecology and the role of salivary immunoglobulin A. Microbiology and Molecular Biology Reviews, 62(1), 71–109.PubMedPubMedCentralGoogle Scholar
  40. Martin, H. J., Riazanskaia, S., & Thomas, C. L. (2012). Sampling and characterisation of volatile organic compound profiles in human saliva using a polydimethylsiloxane coupon placed within the oral cavity. Analyst, 137(16), 3627–3634. doi: 10.1039/c2an35432b.CrossRefPubMedGoogle Scholar
  41. Morenkova, S. A. (2004). Comparative analysis of dependence of saliva sorbitol and fructosamine levels on blood glucose level in patients with diabetes. Biomed Khim, 50(6), 612–614.PubMedGoogle Scholar
  42. Morris-Wiman, J., Sego, R., Brinkley, L., & Dolce, C. (2000). The effects of sialoadenectomy and exogenous EGF on taste bud morphology and maintenance. Chemical Senses, 25(1), 9–19. doi: 10.1093/chemse/25.1.9.CrossRefPubMedGoogle Scholar
  43. Nakamura, Y., Kodama, H., Satoh, T., et al. (2010). Diurnal changes in salivary amino acid concentrations. Vivo, 24(6), 837–842.Google Scholar
  44. Oudhoff, M. J., Bolscher, J. G. M., Nazmi, K., et al. (2008). Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. The FASEB Journal, 22(11), 3805–3812. doi: 10.1096/fj.08-112003.CrossRefPubMedGoogle Scholar
  45. Park, Y. D., Jang, J. H., Oh, Y. J., & Kwon, H. J. (2014). Analyses of organic acids and inorganic anions and their relationship in human saliva before and after glucose intake. Archives of Oral Biology, 59(1), 1–11. doi: 10.1016/j.archoralbio.2013.10.006.CrossRefPubMedGoogle Scholar
  46. Persson, S., Edlund, M. B., Claesson, R., & Carlsson, J. (1990). The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiology and Immunology, 5(4), 195–201.CrossRefPubMedGoogle Scholar
  47. Piermarini, S., Volpe, G., Federico, R., Moscone, D., & Palleschi, G. (2010). Detection of biogenic amines in human saliva using a screen-printed biosensor. Analytical Letters, 43(7–8), 1310–1316. doi: 10.1080/00032710903518724.CrossRefGoogle Scholar
  48. Pittendrigh, C. S. (1993). Temporal organization: reflections of a Darwinian clock-watcher. Annual Review of Physiology, 55, 16–54. doi: 10.1146/ Scholar
  49. Pobozy, E., Czarkowska, W., & Trojanowicz, M. (2006). Determination of amino acids in saliva using capillary electrophoresis with fluorimetric detection. Journal of Biochemical and Biophysical Methods, 67(1), 37–47.CrossRefPubMedGoogle Scholar
  50. Psychogios, N., Hau, D. D., Peng, J., et al. (2011). The human serum metabolome. PLoS ONE, 6(2), e16957. doi: 10.1371/journal.pone.0016957.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rolla, G., Ciardi, J. E., & Bowen, W. H. (1983). Identification of IgA, IgG, lysozyme, albumin, alpha-amylase and glucosyltransferase in the protein layer adsorbed to hydroxyapatite from whole saliva. Scandinavian Journal of Dental Research, 91(3), 186–190.PubMedGoogle Scholar
  52. Sanchez-Pablo, M. A., Gonzalez-Garcia, V., & del Castillo-Rueda, A. (2012). Study of total stimulated saliva flow and hyperpigmentation in the oral mucosa of patients diagnosed with hereditary hemochromatosis. Series of 25 cases. Medicina Oral, Patología Oral y Cirugía Bucal, 17(1), e45–e49.CrossRefPubMedGoogle Scholar
  53. Shetty, S. R., Babu, S., Kumari, S., Shetty, P., Vijay, R., & Karikal, A. (2012). Evaluation of micronutrient status in serum and saliva of oral submucous fibrosis patients: A clinicopathological study. Indian Journal of Medical and Paediatric Oncology, 33(4), 224–226. doi: 10.4103/0971-5851.107087.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Silwood, C. J., Lynch, E., Claxson, A. W., & Grootveld, M. C. (2002). 1H and (13)C NMR spectroscopic analysis of human saliva. Journal of Dental Research, 81(6), 422–427.CrossRefPubMedGoogle Scholar
  55. Soini, H. A., Klouckova, I., Wiesler, D., et al. (2010). Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. Journal of Chemical Ecology, 36(9), 1035–1042. doi: 10.1007/s10886-010-9846-7.CrossRefPubMedGoogle Scholar
  56. Spielmann, N., & Wong, D. T. (2011). Saliva: diagnostics and therapeutic perspectives. Oral Diseases, 17(4), 345–354.CrossRefGoogle Scholar
  57. Spinner, D. S., Cho, I. S., Park, S. Y., et al. (2008). Accelerated prion disease pathogenesis in Toll-like receptor 4 signaling-mutant mice. Journal of Virology, 82(21), 10701–10708. doi: 10.1128/JVI.00522-08.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sugimoto, M., Saruta, J., Matsuki, C., et al. (2013). Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics, 9(2), 454–463. doi: 10.1007/s11306-012-0464-y.CrossRefGoogle Scholar
  59. Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6(1), 78–95. doi: 10.1007/s11306-009-0178-y.CrossRefPubMedGoogle Scholar
  60. Takeda, I., Stretch, C., Barnaby, P., et al. (2009). Understanding the human salivary metabolome. NMR in Biomedicine, 22(6), 577–584. doi: 10.1002/nbm.1369.CrossRefPubMedGoogle Scholar
  61. Toone, R. J., Peacock, O. J., Smith, A. A., et al. (2013). Measurement of steroid hormones in saliva: Effects of sample storage condition. Scandinavian Journal of Clinical and Laboratory Investigation, 73(8), 615–621. doi: 10.3109/00365513.2013.835862.CrossRefPubMedGoogle Scholar
  62. Vakkuri, O. (1985). Diurnal rhythm of melatonin in human saliva. Acta Physiologica Scandinavica, 124(3), 409–412. doi: 10.1111/j.1748-1716.1985.tb07676.x.CrossRefPubMedGoogle Scholar
  63. Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84(3), 531–539.PubMedGoogle Scholar
  64. Wang, D., Fan, L., Zhang, L., et al. (2012). Comparison of the total arsenic concentration between saliva and blood after oral administration of sodium arsenite to rats. Wei Sheng Yan Jiu, 41(6), 947–950.PubMedGoogle Scholar
  65. Ward, M. E., Politzer, I. R., Laseter, J. L., & Alam, S. Q. (1976). Gas chromatographic mass spectrometric evaluation of free organic acids in human saliva. Biomedical Mass Spectrometry, 3(2), 77–80.CrossRefPubMedGoogle Scholar
  66. Wei, J., Xie, G., Zhou, Z., Shi, P., et al. (2011). Salivary metabolite signatures of oral cancer and leukoplakia. International Journal of Cancer, 129(9), 2207–2217.CrossRefPubMedGoogle Scholar
  67. Wishart, D. S., Jewison, T., Guo, A. C., et al. (2013). HMDB 3.0–The human metabolome database in 2013. Nucleic Acids Research, 41(Database issue), D801–D807. doi: 10.1093/nar/gks1065.CrossRefPubMedGoogle Scholar
  68. Wishart, D. S., Lewis, M. J., Morrissey, J. A., et al. (2008). The human cerebrospinal fluid metabolome. Journal of Chromatography B, 871(2), 164–173. doi: 10.1016/j.jchromb.2008.05.001.CrossRefGoogle Scholar
  69. Wisner, A., Dufour, E., Messaoudi, M., et al. (2006). Human Opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proceedings of the National Academy of Sciences, 103(47), 17979–17984. doi: 10.1073/pnas.0605865103.CrossRefGoogle Scholar
  70. Wong, D. T. (2006). Salivary diagnostics powered by nanotechnologies, proteomics and genomics. Journal of the American Dental Association, 137(3), 313–321.CrossRefPubMedGoogle Scholar
  71. Xia, Y., Peng, C., Zhou, Z., et al. (2012). Clinical significance of saliva urea, creatinine, and uric acid levels in patients with chronic kidney disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 37(11), 1171–1176. doi: 10.3969/j.issn.1672-7347.2012.11.016.PubMedGoogle Scholar
  72. Zappacosta, B., Manni, A., Persichilli, S., et al. (2003). HPLC analysis of some sulphur compounds in saliva: Comparison between healthy subjects and periodontopathic patients. Clinica Chimica Acta, 338(1–2), 57–60.CrossRefGoogle Scholar
  73. Zheng, J., Dixon, R. A., & Li, L. (2012). Development of isotope labeling LC-MS for human salivary metabolomics and application to profiling metabolome changes associated with mild cognitive impairment. Analytical Chemistry, 84(24), 10802–10811. doi: 10.1021/ac3028307.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zerihun T. Dame
    • 1
  • Farid Aziat
    • 1
  • Rupasri Mandal
    • 1
  • Ram Krishnamurthy
    • 1
  • Souhaila Bouatra
    • 1
  • Shima Borzouie
    • 1
  • An Chi Guo
    • 2
  • Tanvir Sajed
    • 2
  • Lu Deng
    • 1
  • Hong Lin
    • 1
  • Philip Liu
    • 1
  • Edison Dong
    • 1
  • David S. Wishart
    • 1
    • 2
    • 3
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Computing SciencesUniversity of AlbertaEdmontonCanada
  3. 3.National Institute for NanotechnologyEdmontonCanada

Personalised recommendations