, Volume 11, Issue 6, pp 1478–1491 | Cite as

Advances in understanding CO2 responsive plant metabolomes in the era of climate change

  • Biswapriya B. Misra
  • Sixue ChenEmail author
Review Article


Anthropogenic climate change due to increased CO2 emission poses a major threat to global crop productivity, food quality, and security. Numerous studies, mostly classical, have predicted the effects of increased CO2 levels on environmental temperature and water balance, and on the life cycle, biomass, photosynthesis, leaf carbon/nitrogen ratio, and stomatal distribution in various plant species. With the advent of high-throughput tools for studying plant-CO2 responsiveness, it is now possible to obtain a metabolome-level view of the effect of climate change on plants. In this review, we examine the plant CO2-responsive primary and secondary metabolism, isoprene emission, in the presence of other stressors, and the advancement in state-of the art research methods that will facilitate future metabolomic studies.


CO2 Metabolites Isoprene Stress Omics Mass spectrometry 



This work was supported by the U.S. National Science Foundation grant NSF-MCB-1158000 to SC.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. AbdElgawad, H., Peshev, D., Zinta, G., Van den Ende, W., Janssens, I. A., & Asard, H. (2014). Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: A comparison of fructan and non-fructan accumulators. PLoS ONE, 9, e92044.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agrell, J. A., McDonald, E. P., & Lindroth, R. L. (2008). Effects of CO2 and light on tree phytochemistry and insect performance. Oikos, 88, 259–272.CrossRefGoogle Scholar
  3. Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351–372.PubMedCrossRefGoogle Scholar
  4. Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258–270.PubMedCrossRefGoogle Scholar
  5. Ainsworth, E. A., Rogers, A., Vodkin, L. O., Walter, A., & Schurr, U. (2006). The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiology, 142, 135–147.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aranjuelo, I., Bosquet, L. C., Morcuende, R., Avice, J. C., Nogués, S., Araus, J. L., et al. (2011). Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? Journal of Experimental Botany, 62, 3957–3969.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arrivault, S., Guenther, M., Ivakov, A., Feil, R., Vosloh, D., Dongen, J. T. V., et al. (2009). Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant Journal, 59, 826–839.PubMedCrossRefGoogle Scholar
  8. Baba, M., Suzuki, I., & Shiraiwa, Y. (2011). Proteomic analysis of high-CO2-inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii. Plant Cell Physiology, 52, 1302–1314.PubMedCrossRefGoogle Scholar
  9. Bae, H., & Sicher, R. (2004). Changes of soluble protein expression and leaf metabolite levels in Arabidopsis thaliana grown in elevated atmospheric carbon dioxide. Field Crops Research, 90, 61–73.CrossRefGoogle Scholar
  10. Ballhorn, D. J., Reisdorff, C., & Pfanz, H. (2012). Quantitative effects of enhanced CO2 on jasmonic acid induced plant volatiles of lima bean (Phaseolus lunatus L.). Journal of Applied Botany and Food Quality, 84, 65–71.Google Scholar
  11. Barnaby, J. Y., Fleisher, D., Reddy, V., & Sicher, R. (2015). Combined effects of CO2 enrichment, diurnal light levels and water stress on foliar metabolites of potato plants grown in naturally sunlit controlled environment chambers. Physiologia Plantarum, 153, 243–252.PubMedCrossRefGoogle Scholar
  12. Beardall, J., Johnston, A., & Raven, J. (1998). Environmental regulation of CO2-concentrating mechanisms in microalgae. Canadian Journal of Botany, 76, 1010–1017.CrossRefGoogle Scholar
  13. Beste, D. J., Nöh, K., Niedenführ, S., Mendum, T. A., Hawkins, N. D., Ward, J. L., et al. (2013). 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chemistry & Biology, 20, 1012–1021.CrossRefGoogle Scholar
  14. Bloom, A. J., Smart, D. R., Nguyen, D. T., & Searles, P. S. (2002). Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 99, 1730–1735.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brilli, F., Barta, C., Fortunati, A., Lerdau, M., Loreto, F., & Centritto, M. (2007). Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytologist, 175, 244–254.PubMedCrossRefGoogle Scholar
  16. Calfapietra, C., Mugnozza, S., Karnosky, G., Loreto, D. F., & Sharkey, T. D. (2008). Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytologist, 179, 55–61.PubMedCrossRefGoogle Scholar
  17. Canadell, J. G., Quere, C. L., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Clais, P., et al. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104, 18866–18870.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cegelski, L., & Schaefer, J. (2006). NMR determination of photorespiration in intact leaves using in vivo 12CO2 labeling. Journal of Magnetic Resonance, 178, 1–10.PubMedCrossRefGoogle Scholar
  19. Centritto, M., Nascetti, P., Petrilli, L., Raschi, A., & Loreto, F. (2004). Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment. Plant, Cell and Environment, 27, 403–412.CrossRefGoogle Scholar
  20. Chen, W. P., Yang, X. Y., Harms, G. L., Gray, W. M., Hegeman, A. D., & Cohen, J. D. (2011a). An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide-and in vivo labeling system for proteomics and metabolomics research. Proteome Science, 9, 9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen, Y., Yan, X., & Chen, S. (2011b). Bioinformatic analysis of molecular network of glucosinolate biosynthesis. Computational Biology and Chemistry, 35, 10–18.PubMedCrossRefGoogle Scholar
  22. Constable, J. V. H., Litvak, M. E., Greenberg, J. P., & Monson, R. K. (1999). Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Global Change Biology, 5, 255–267.Google Scholar
  23. Darbah, J. N. T., Sharkey, T. D., Calfapietra, C., & Karnosky, D. F. (2010). Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Environmental Pollution, 158, 1008–1014.PubMedCrossRefGoogle Scholar
  24. Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, K. M., Erda, L., & Howden, S. M. (2007). Food, fibre and forest products. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Linden, C. E. van der Hanson, et al. (Eds.), Climate change 2007: Impacts adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report on the Intergovernmental Panel on Climate Change (pp. 273–313). Cambridge: Cambridge University Press.Google Scholar
  25. Fall, R. R., & Monson, R. K. (1992). Isoprene emission rate and intercellular isoprene concentration as influenced by stomatal distribution and conductance. Plant Physiology, 100, 987–992.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fang, W., Si, Y., Douglass, S., Casero, D., Merchant, S. S., Pellegrini, M., et al. (2012). Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell, 24, 1876–1893.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Feng, G. Q., Li, Y., & Cheng, Z. M. M. (2014). Plant molecular and genomic responses to stresses in projected future CO2 environment. Critical Reviews in Plant Sciences, 33, 238–249.CrossRefGoogle Scholar
  28. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.PubMedCrossRefGoogle Scholar
  29. Fischer, B. U., Frehner, M., Hebeisen, T., Zanetti, S., Stadelmann, F., Lüscher, A., et al. (1997). Source-sink relations in Lolium perenne L. as reflected by carbohydrate concentrations in leaves and pseudo-stems during regrowth in a free air carbon dioxide enrichment (FACE) experiment. Plant, Cell and Environment, 20, 945–952.CrossRefGoogle Scholar
  30. Florian, A., Timm, S., Nikoloski, Z., Tohge, T., Bauwe, H., Araújo, W. L., et al. (2014). Analysis of metabolic alterations in Arabidopsis following changes in the carbon dioxide and oxygen partial pressures. International Journal of Plant Biology, 56, 941–959.CrossRefGoogle Scholar
  31. Fukayama, H., Fukuda, T., Masumoto, C., Taniguchi, Y., Sakai, H., Cheng, W., et al. (2009). Rice plant response to long term CO2 enrichment: Gene expression profiling. Plant Science, 177, 203–210.CrossRefGoogle Scholar
  32. Fukayama, H., Sugino, M., Fukuda, T., Masumoto, C., Taniguchi, Y., Okada, M., et al. (2011). Gene expression profiling of rice grown in free air CO2 enrichment (FACE) and elevated soil temperature. Field Crops Research, 121, 195–199.CrossRefGoogle Scholar
  33. Geissler, N., Hussin, S., & Koyro, H. W. (2010). Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta, 231, 583–594.PubMedCrossRefGoogle Scholar
  34. Gillespie, K. M., Xu, F., Richter, K. T., McGrath, J. M., Markelz, R. C., Ort, D. R., et al. (2012). Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant, Cell and Environment, 35, 169–184.PubMedCrossRefGoogle Scholar
  35. Gleadow, R. M., Evans, J. R., McCaffery, S., & Cavagnaro, T. R. (2009). Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO2. Plant Biology, 11, 76–82.PubMedCrossRefGoogle Scholar
  36. Hasunuma, T., Harada, K., Miyazawa, S. I., Kondo, A., Fukusaki, E., & Miyake, C. (2010). Metabolic turnover analysis by a combination of in vivo 13C-labelling from 13CO2 and metabolic profiling with CE-MS/MS reveals rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum leaves. Journal of Experimental Botany, 61, 1041–1051.PubMedCrossRefGoogle Scholar
  37. Högy, P., Brunnbauer, M., Koehler, P., Schwadorf, K., Breuer, J., Franzaring, J., et al. (2013). Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment. Environmental and Experimental Botany, 88, 11–18.CrossRefGoogle Scholar
  38. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van Der Linden, P. J., Xiaosu, D., et al. (2001). Climate Change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge: Cambridge University Press.Google Scholar
  39. Huege, J., Sulpice, R., Gibon, Y., Lisec, J., Koehl, K., & Kopka, J. (2007). GC-EI-TOF-MS analysis of in vivo/carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labelling. Phytochemistry, 68, 2258–2272.PubMedCrossRefGoogle Scholar
  40. IPCC (Intergovernmental Panel on Climate Change) Climate Change 2013 (2013). Impacts, Adaptation and Vulnerability. Geneva: IPCC Secretariat. Accessed 4 June 2015.
  41. Jasoni, R., Kane, C., Green, C., Peffley, E., Tissue, D., Thompson, L., et al. (2004). Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions. Environmental and Experimental Botany, 51, 273–280.CrossRefGoogle Scholar
  42. Kaplan, F., Zhao, W., Richards, J. T., Wheeler, R. M., Guy, C. L., & Levine, L. H. (2012). Transcriptional and metabolic insights into the differential physiological responses of Arabidopsis to optimal and supraoptimal atmospheric CO2. PLoS ONE, 7, e43583.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Karl, T., Fall, R., Rosenstiel, T. N., Prazeller, P., Larsen, B., Seufert, G., et al. (2002). On-line analysis of the 13CO2 labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors. Planta, 215, 894–905.PubMedCrossRefGoogle Scholar
  44. Karowe, D. N., Seimens, D. H., & Mitchell-Olds, T. (1997). Species-specific response of glucosinolate content to elevated atmospheric CO2. Journal of Chemical Ecology, 23, 2569–2582.CrossRefGoogle Scholar
  45. Kinney, K. K., Lindroth, R. L., Jung, S. M., & Nordheim, E. V. (1997). Effects of CO2 and NO3-availability on deciduous trees: Phytochemistry and insect performance. Ecology, 78, 215–230.Google Scholar
  46. Kirschbaum, M. U. (2011). Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiology, 155, 117–124.PubMedCrossRefGoogle Scholar
  47. Kitao, M., Tobita, H., Utsugi, H., Komatsu, M., Kitaoka, S., Maruyama, Y., et al. (2012). Photosynthetic traits around budbreak in pre-existing needles of Sakhalin spruce (Picea glehnii) seedlings grown under elevated CO2 concentration assessed by chlorophyll fluorescence measurements. Tree Physiology, 32, 998–1007.PubMedCrossRefGoogle Scholar
  48. Lavola, A., & Julkunen-Tiitto, R. (1994). The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia, 99, 315–321.PubMedCrossRefGoogle Scholar
  49. Leakey, A. B. D. (2009). Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society of London B, 276, 2333–2343.CrossRefGoogle Scholar
  50. Leakey, A. D., Xu, F., Gillespie, K. M., McGrath, J. M., Ainsworth, E. A., & Ort, D. R. (2009). Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 106, 3597–3602.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Leegood, R. C. (2002). C4 photosynthesis: Principles of CO2 concentration and prospects for its introduction into C3 plants. Journal of Experimental Botany, 53, 581–590.PubMedCrossRefGoogle Scholar
  52. Levine, L. H., Kasahara, H., Kopka, J., Erban, A., Fehrl, I., Kaplan, F., et al. (2008). Physiologic and metabolic responses of wheat seedlings to elevated and super-elevated carbon dioxide. Advances in Space Research, 42, 1917–1928.CrossRefGoogle Scholar
  53. Li, P., Ainsworth, E. A., Leakey, A. D., Ulanov, A., Lozovaya, V., Ort, D. R., et al. (2008). Arabidopsis transcript and metabolite profiles: Ecotype-specific responses to open-air elevated [CO2]. Plant, Cell and Environment, 31, 1673–1687.PubMedCrossRefGoogle Scholar
  54. Li, X., Zhang, G., Sun, B., Zhang, S., Zhang, Y., Liao, Y., et al. (2013). Stimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphere. Scientific Reports, 3, 3433.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lindroth, R. L. (2010). Impacts of elevated atmospheric CO2 and O3 on forests: Phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 36, 2–21.PubMedCrossRefGoogle Scholar
  56. Lindroth, R. L., Kinney, K. K., & Platz, C. L. (1993). Responses of deciduous trees to elevated atmospheric CO2: Productivity, phytochemistry, and insect performance. Ecology, 74, 763–777.CrossRefGoogle Scholar
  57. Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife, 3, e02245.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. (2004). Rising atmospheric carbon dioxide: Plants FACE the Future. Annual Review of Plant Biology, 55, 591–628.PubMedCrossRefGoogle Scholar
  59. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J., & Ort, D. R. (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918–1921.PubMedCrossRefGoogle Scholar
  60. Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., Fabozzi, C., et al. (1996). Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L. leaves. Plant Physiology, 110, 1317–1322.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Loreto, F., Fischbach, R. J., Schnitzler, J. P., Ciccioli, P., Brancaleoni, E. N. Z. O., Calfapietra, C., et al. (2001). Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Global Change Biology, 7, 709–717.CrossRefGoogle Scholar
  62. Loreto, F., Centritto, M., Barta, C., Calfapietra, C., Fares, S., & Monson, R. K. (2007). The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant, Cell and Environment, 30, 662–669.PubMedCrossRefGoogle Scholar
  63. Markelz, R. J. C., Lai, L. X., Vosseler, L. N., & Leakey, A. D. B. (2014a). Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply. Plant, Cell and Environment, 37, 886–898.PubMedCrossRefGoogle Scholar
  64. Markelz, R. J. C., Vosseller, L. N., & Leakey, A. D. B. (2014b). Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2]. Plant, Cell and Environment, 37, 2542–2552.PubMedCrossRefGoogle Scholar
  65. McDonald, E. P., Agrell, J., & Lindroth, R. L. (1999). CO2 and light effects on deciduous trees: Growth, foliar chemistry, and insect performance. Oecologia, 119, 389–399.PubMedGoogle Scholar
  66. Miyagi, A., Takahara, K., Kasajima, I., Takahashi, H., Kawai-Yamada, M., & Uchimiya, H. (2011). Fate of 13C in metabolic pathways and effects of high CO2 on the alteration of metabolites in Rumex obtusifolius L. Metabolomics, 7, 524–535.CrossRefGoogle Scholar
  67. Morfopoulos, C., Sperlich, D., Peñuelas, J., Filella, I., Llusià, J., Medlyn, B. E., et al. (2014). A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2. New Phytologist, 203, 125–139.PubMedCrossRefGoogle Scholar
  68. Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D. B., Bloom, A. J., et al. (2014). Increasing CO2 threatens human nutrition. Nature, 510, 139–142.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Onda, Y., Miyagi, A., Takahara, K., Uchimiya, H., & Kawai-Yamada, M. (2014). Effects of NAD kinase 2 overexpression on primary metabolite profiles in rice leaves under elevated carbon dioxide. Plant Biology, 16, 819–824.PubMedCrossRefGoogle Scholar
  70. Papadimitropoulos, M. E. P., & Klapa, M. I. (2015). Investigating the effect of elevated CO2 in the growth environment of salt-stressed plants using integrated omic analyses. In R. Mahalingam (Ed.), Combined stresses in plants (pp. 49–69). New York: Springer International Publishing.Google Scholar
  71. Pegoraro, E., Rey, A., Bobich, E. G., Gafford, G. B., Grieve, K. A., Malhi, Y., et al. (2004). Effect of elevated CO2 concentration and vapor pressure deficit on isoprene emission from leaves of Populus deltoides during drought. Functional Plant Biology, 31, 1137–1147.CrossRefGoogle Scholar
  72. Penuelas, J., & Llusia, J. (1997). Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. Journal of Chemical Ecology, 23, 979–993.CrossRefGoogle Scholar
  73. Peñuelas, J., & Llusià, J. (2003). BVOCs: Plant defense against climate warming? Trends in Plant Science, 8, 105–109.PubMedCrossRefGoogle Scholar
  74. Pérez-López, U., Robredo, A., Lacuesta, M., Sgherri, C., Muñoz-Rueda, A., Navari-Izzo, F., et al. (2009). The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiologia Plantarum, 135, 29–42.PubMedCrossRefGoogle Scholar
  75. Plessl, M., Heller, W., Payer, H. D., Elstner, E. F., Habermeyer, J., & Heiser, I. (2005). Growth parameters and resistance against Drechslera teres of spring barley (Hordeum vulgare L. cv. Scarlett) grown at elevated ozone and carbon dioxide concentrations. Plant Biology, 7, 694–705.PubMedCrossRefGoogle Scholar
  76. Poorter, H., & Navas, M. L. (2003). Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytologist, 157, 175–198.CrossRefGoogle Scholar
  77. Possell, M., & Hewitt, C. N. (2011). Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Global Change Biology, 17, 1595–1610.CrossRefGoogle Scholar
  78. Possell, M., Hewitt, C. N., & Beerling, D. J. (2005). The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Global Change Biology, 11, 60–69.CrossRefGoogle Scholar
  79. Prather, K. A., Guazzotti, S. A., Suess, D. T., Pastor, S. H., & Coffee, K. (2001). New insights into the role of aerosols in affecting pollution and global climate change. Abstracts of Papers: American Chemical Society, 221, U458.Google Scholar
  80. Prins, A., Mukubi, J. M., Pellny, T. K., Verrier, P. J., Beyene, G., Lopes, M. S., et al. (2011). Acclimation to high CO2 in maize is related to water status and dependent on leaf rank. Plant, Cell and Environment, 34, 314–331.PubMedCrossRefGoogle Scholar
  81. Rapparini, F., Baraldi, R., Miglietta, F., & Loreto, F. (2004). Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant, Cell and Environment, 27, 381–391.CrossRefGoogle Scholar
  82. Renberg, L., Johansson, A. I., Shutova, T., Stenlund, H., Aksmann, A., & Raven, J. A. (2010). A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiology, 154, 187–196.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Robredo, A., López, U. P., Apodaca, J. M., Lacuesta, M., Petite, A. M., & Rueda, A. M. (2011). Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environmental and Experimental Botany, 71, 399–408.Google Scholar
  84. Rogers, A., Fischer, B. U., Bryant, J., Frehner, M., Blum, H., Raines, C. A., et al. (1998). Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiology, 118, 683–689.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rogers, A., Allen, D. J., Davey, P. A., Morgan, P. B., Ainsworth, E. A., Bernacchi, C. J., et al. (2004). Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant, Cell Environment, 27, 449–458.CrossRefGoogle Scholar
  86. Rosenstiel, T. N., Potosnak, M. J., Griffin, K. L., Fall, R., & Monson, R. K. (2003). Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature, 421, 256–259.PubMedCrossRefGoogle Scholar
  87. Roth, S., Lindroth, R. L., Volin, J., & Kruger, E. (1998). Enriched atmospheric CO2 and defoliation: Effects on tree chemistry and insect performance. Global Change Biology, 4, 419–430.CrossRefGoogle Scholar
  88. Rubio-Asensio, J. S., Rachmilevitch, S., & Bloom, A. J. (2015). Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels. Plant Physiology, 168, 156–163. doi: 10.1104/pp.15.00110.CrossRefGoogle Scholar
  89. Ryan, G. D., Rasmussen, S., Xue, H., Parsons, A. J., & Newman, J. A. (2014). Metabolite analysis of the effects of elevated CO2 and nitrogen fertilization on the association between tall fescue (Schedonorus arundinaceus) and its fungal symbiont Neotyphodium coenophialum. Plant, Cell and Environment, 37, 204–212.PubMedCrossRefGoogle Scholar
  90. Sallas, L., Luomala, E. M., Utriainen, J., Kainulainen, P., & Holopainen, J. K. (2003). Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiology, 23, 97–108.PubMedCrossRefGoogle Scholar
  91. Sato, S., & Yanagisawa, S. (2014). Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis. Plant and Cell Physiology, 55, 306–319.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schilmiller, A. L., Pichersky, E., & Last, R. L. (2012). Taming the hydra of specialized metabolism: How systems biology and comparative approaches are revolutionizing plant biochemistry. Current Opinion in Plant Biology, 15, 338–344.PubMedCrossRefGoogle Scholar
  93. Scholefield, P. A., Doick, K. J., Herbert, B. M. J., Hewitt, C. N. S., Schnitzler, J. P., Pinelli, P., et al. (2004). Impact of rising CO2 on emissions of volatile organic compounds: Isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant, Cell and Environment, 7, 393–401.CrossRefGoogle Scholar
  94. Schonhof, I., Kläring, H. P., Krumbein, A., & Schreiner, M. (2007). Interaction between atmospheric CO2 and glucosinolates in broccoli. Journal of Chemical Ecology, 33, 105–114.PubMedCrossRefGoogle Scholar
  95. Sharkey, T. D., Loreto, F., & Delwiche, C. F. (1991). High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant, Cell and Environment, 14, 333–338.CrossRefGoogle Scholar
  96. Sharkey, T. D., Wiberley, A. E., & Donohue, A. R. (2008). Isoprene emission from plants: Why and how. Annals of Botany, 101, 5–18.PubMedCrossRefGoogle Scholar
  97. Sicher, R. C., & Barnaby, J. Y. (2012). Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Physiologia Plantarum, 144, 238–253.PubMedCrossRefGoogle Scholar
  98. Stitt, M., & Fernie, A. R. (2003). From measurements of metabolites to metabolomics: An ‘on the fly’ perspective illustrated by recent studies of carbon-nitrogen interactions. Current Opinion Biotechnology, 14, 136–144.CrossRefGoogle Scholar
  99. Sun, Z., Niinemets, U., Hüve, K., Noe, S. M., Rasulov, B., Copolovici, L., et al. (2012). Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Global Change Biology, 18, 3423–3440.CrossRefGoogle Scholar
  100. Takatani, N., Ito, T., Kiba, T., Mori, M., Miyamoto, T., Maeda, S. I., et al. (2013). Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Plant and Cell Physiology, 55, 281–292.PubMedCrossRefGoogle Scholar
  101. Tallis, M. J., Lin, Y., Rogers, A., Zhang, J., Street, N. R., Miglietta, F., et al. (2010). The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytologist, 186, 415–428.PubMedCrossRefGoogle Scholar
  102. Teng, N., Wang, J., Chen, T., Wu, X., Wang, Y., & Lin, J. (2006). Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist, 172, 92–103.PubMedCrossRefGoogle Scholar
  103. Terashima, I., Yanagisawa, S., & Sakakibara, H. (2014). Plant responses to CO2: Background and perspectives. Metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Plant Cell Physiology, 55, 237–240.PubMedCrossRefGoogle Scholar
  104. Thomas, R. B., & Strain, B. R. (1991). Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiology, 96, 627–634.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tian, W., Hou, C., Ren, Z., Pan, Y., Jia, J., Zhang, H., et al. (2015). A molecular pathway for CO2 response in Arabidopsis guard cells. Nature Communications, 6, 6057.PubMedCrossRefGoogle Scholar
  106. Trowbridge, A. M., Asensio, D., Eller, A. S. D., Way, D. A., Wilkinson, M. J., Schnitzler, J. P., et al. (2012). Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations. PLoS ONE, 7, e32387.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Vavasseur, A., & Raghavendra, A. S. (2005). Guard cell metabolism and CO2 sensing. New Phytologist, 165, 665–682.PubMedCrossRefGoogle Scholar
  108. Walker, A. P., Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Asao, S., Hickler, T., et al. (2015). Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Global Biogeochemical Cycles, 29, 476–495.CrossRefGoogle Scholar
  109. Wang, S. Y., Bunce, J. A., & Maas, J. L. (2003). Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agricultural and Food Chemistry, 51, 4315–4320.PubMedCrossRefGoogle Scholar
  110. Wang, D., Heckathorn, S. A., Wang, X., & Philpott, S. M. (2012). A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia, 169, 1–13.PubMedCrossRefGoogle Scholar
  111. Watanabe, C. K., Sato, S., Yanagisawa, S., Uesono, Y., Terashima, I., & Noguchi, K. (2013). Effects of elevated CO2 on levels of primary metabolites and transcripts of genes encoding respiratory enzymes and their diurnal patterns in Arabidopsis thaliana: Possible relationships with respiratory rates. Plant and Cell Physiology, 55, 341–357.PubMedCrossRefGoogle Scholar
  112. Way, D. A., Ghirardo, A., Kanawati, B., Esperschütz, J., Monson, R. K., Jackson, R. B., et al. (2013). Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene-and non-isoprene-emitting poplars. New Phytologist, 200, 534–546.PubMedCrossRefGoogle Scholar
  113. Wilkinson, M. J., Monson, R. K., Trahan, N., Lee, S., Brown, E., Jackson, R. B., et al. (2009). Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Global Change Biology, 15, 1189–1200.CrossRefGoogle Scholar
  114. Yu, J., Du, H., Xu, M., & Huang, B. (2012). Metabolic responses to heat stress under elevated atmospheric CO2 concentration in a cool-season grass species. Journal of the American Society for Horticultural Science, 137, 221–228.Google Scholar
  115. Zavala, J. A., Casteel, C. L., DeLucia, E. H., & Berenbaum, M. R. (2008). Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proceedings of the National Academy of Sciences of the United States of America, 105, 5129–5133.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ziska, L. H., Emche, S. D., Johnson, E. L., George, K., Reed, D. R., & Sicher, R. C. (2005). Alterations in the production and concentration of selected alkaloids as a function of rising atmospheric carbon dioxide and air temperature: Implications for ethno-pharmacology. Global Change Biology, 11, 1798–1807.CrossRefGoogle Scholar
  117. Ziska, L. H., Panicker, S., & Wojno, H. L. (2008). Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy (Papaver setigerum DC.). Climate Change, 91, 395–403.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleUSA
  2. 2.Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology ResearchUniversity of FloridaGainesvilleUSA
  3. 3.Cancer & Genetics Research ComplexUniversity of FloridaGainesvilleUSA

Personalised recommendations