Advertisement

Metabolomics

, Volume 11, Issue 6, pp 1552–1562 | Cite as

A tandem liquid chromatography–mass spectrometry (LC–MS) method for profiling small molecules in complex samples

  • James S. Pyke
  • Damien L. Callahan
  • Komal Kanojia
  • Jairus Bowne
  • Sheena Sahani
  • Dedreia Tull
  • Antony Bacic
  • Malcolm J. McConville
  • Ute Roessner
Original Article

Abstract

Liquid chromatography–mass spectrometry (LC–MS) methods using either aqueous normal phase (ANP) or reversed phase (RP) columns are routinely used in small molecule or metabolomic analyses. These stationary phases enable chromatographic fractionation of polar and non-polar compounds, respectively. The application of a single chromatographic stationary phase to a complex biological extract results in a significant proportion of compounds which elute in the non-retained fraction, where they are poorly detected because of a combination of ion suppression and the co-elution of isomeric compounds. Thus coverage of both polar and non-polar components of the metabolome generally involves multiple analyses of the same sample, increasing the analysis time and complexity. In this study we describe a novel tandem in-line LC–MS method, in which compounds from one injection are sequentially separated in a single run on both ANP and RP LC-columns. This method is simple, robust, and enables the use of independent gradients customized for both RP and ANP columns. The MS signal is acquired in a single chromatogram which reduces instrument time and operator and data analysis errors. This method has been used to analyze a range of biological extracts, from plant and animal tissues, human serum and urine, microbial cell and culture supernatants. Optimized sample preparation protocols are described for this method as well as a library containing the retention times and accurate masses of 127 compounds.

Keywords

Reversed phase Aqueous normal phase Mass spectrometry Metabolomics Tandem liquid chromatography 

Notes

Acknowledgments

The authors thank Thomas Naderer for the supply of S. cerevisiae and E. coli cells and Liesbet Temmerman for C. elegans. J. Pyke would thanks Paul O’Donnell for and Richard EH Wettenhall. The authors thank Steve Fischer, Agilent Technologies, Santa Clara, U.S.A. for his suggestion of the 6-port configuration.

Conflict of interest

All authors declare they have no conflict of interest in the submission of this manuscript.

Compliance with ethical requirements

The authors declare there are no ethical implications and that this manuscript complies with the ethical requirements of authors outlined by the Committee on Publication Ethics (COPE).

Financial support

M McConville is an NHMRC Principal Research Fellow. U. Roessner is an ARC Future Fellow. The authors are grateful to the Victorian Node of Metabolomics Australia, which is funded through Bioplatforms Australia Pty Ltd, a National Collaborative Research Infrastructure Strategy (NCRIS), 5.1 biomolecular platforms and informatics investment, and co-investment from the Victorian State government and The University of Melbourne.

Supplementary material

11306_2015_806_MOESM1_ESM.docx (941 kb)
Supplementary material 1 (DOCX 940 kb)

References

  1. Allwood, J. W., & Goodacre, R. (2010). An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochemical Analysis, 21(1), 33–47.CrossRefPubMedGoogle Scholar
  2. Buscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-Platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81(6), 2135–2143.CrossRefPubMedGoogle Scholar
  3. Callahan, D. L., De Souza, D., Bacic, A., & Roessner, U. (2009). Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography. Journal of Separation Science, 32(13), 2273–2280.CrossRefPubMedGoogle Scholar
  4. Chalcraft, K., Kong, J., Waserman, S., Jordana, M., & McCarry, B. (2014). Comprehensive metabolomic analysis of peanut-induced anaphylaxis in a murine model. Metabolomics, 10(3), 452–460.CrossRefGoogle Scholar
  5. Chalcraft, K. R., & McCarry, B. E. (2013). Tandem LC columns for the simultaneous retention of polar and nonpolar molecules in comprehensive metabolomics analysis. Journal of Separation Science, 36(21–22), 3478–3485.CrossRefPubMedGoogle Scholar
  6. Dunn, W. B., Broadhurst, D., Begley, P., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083.CrossRefPubMedGoogle Scholar
  7. Fischer, S., Pesek, M., & Pesek, J. (2010). ANP chromatography for hydrophilic metabolites. Resource document. http://disruptechno2.free.fr/MicroSolv/HPLC columns/Presentations/ANP chromatography for hydrophilic metabolites.pdf. Accessed June 2010.
  8. Greco, G., Grosse, S., & Letzel, T. (2013). Serial coupling of reversed-phase and zwitterionic hydrophilic interaction LC/MS for the analysis of polar and nonpolar phenols in wine. Journal of Separation Science, 36(8), 1379–1388.CrossRefPubMedGoogle Scholar
  9. Horai, H., Arita, M., Kanaya, S., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714.CrossRefPubMedGoogle Scholar
  10. Jayamanne, M., Granelli, I., Tjernberg, A., & Edlund, P. O. (2010). Development of a two-dimensional liquid chromatography system for isolation of drug metabolites. Journal of Pharmaceutical and Biomedical Analysis, 51(3), 649–657.CrossRefPubMedGoogle Scholar
  11. Kiffe, M., Graf, D., & Trunzer, M. (2007). Two-dimensional liquid chromatography/mass spectrometry set-up for structural elucidation of metabolites in complex biological matrices. Rapid Communications in Mass Spectrometry, 21(6), 961–970.CrossRefPubMedGoogle Scholar
  12. Kind, T., Tolstikov, V., Fiehn, O., & Weiss, R. H. (2007). A comprehensive urinary metabolomic approach for identifying kidney cancerr. Analytical Biochemistry, 363(2), 185–195.CrossRefPubMedGoogle Scholar
  13. Klavins, K., Drexler, H., Hann, S., & Koellensperger, G. (2014). Quantitative metabolite profiling utilizing parallel column analysis for simultaneous reversed-phase and hydrophilic interaction liquid chromatography separations combined with tandem mass spectrometry. Analytical Chemistry, 86(9), 4145–4150.CrossRefPubMedGoogle Scholar
  14. Kuehnbaum, N. L., & Britz-McKibbin, P. (2013). New advances in separation science for metabolomics: Resolving chemical diversity in a post-genomic era. Chemical Reviews, 113(4), 2437–2468.CrossRefPubMedGoogle Scholar
  15. Kulsing, C., Yang, Y., Munera, C., et al. (2014). Correlations between the zeta potentials of silica hydride-based stationary phases, analyte retention behaviour and their ionic interaction descriptors. Analytica Chimica Acta, 817, 48–60.CrossRefPubMedGoogle Scholar
  16. Liu, Y., Xue, X., Guo, Z., Xu, Q., Zhang, F., & Liang, X. (2008). Novel two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography, an excellent orthogonal system for practical analysis. Journal of Chromatography A, 1208(1–2), 133–140.CrossRefPubMedGoogle Scholar
  17. Nagele, E., Vollmer, M., & Horth, P. (2003). Two-dimensional nano-liquid chromatography-mass spectrometry system for applications in proteomics. Journal of Chromatography A, 1009(1–2), 197–205.CrossRefPubMedGoogle Scholar
  18. Pesek, J. J., Matyska, M. T., Boysen, R. I., Yang, Y., & Hearn, M. T. W. (2013). Aqueous normal-phase chromatography using silica-hydride-based stationary phases. Trends in Analytical Chemistry, 42, 64–73.CrossRefGoogle Scholar
  19. Pesek, J. J., Matyska, M. T., Fischer, S. M., & Sana, T. R. (2008). Analysis of hydrophilic metabolites by high-performance liquid chromatography–mass spectrometry using a silica hydride-based stationary phase. Journal of Chromatography A, 1204(1), 48–55.CrossRefPubMedGoogle Scholar
  20. Pesek, J. J., Matyska, M. T., Hearn, M. T. W., & Boysen, R. I. (2009). Aqueous normal-phase retention of nucleotides on silica hydride columns. Journal of Chromatography A, 1216(7), 1140–1146.CrossRefPubMedGoogle Scholar
  21. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395. [Research Support, Non-U.S. Gov’t].CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rajab, M., Greco, G., Heim, C., Helmreich, B., & Letzel, T. (2013). Serial coupling of RP and zwitterionic hydrophilic interaction LC–MS: Suspects screening of diclofenac transformation products by oxidation with a boron-doped diamond electrode. Journal of Separation Science, 36(18), 3011–3018.PubMedGoogle Scholar
  23. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.CrossRefPubMedGoogle Scholar
  24. van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., & Hankemeier, T. (2007). Microbial metabolomics: Toward a platform with full metabolome coverage. Analytical Biochemistry, 370(1), 17–25.CrossRefPubMedGoogle Scholar
  25. Wang, Y., Wang, J., Yao, M., et al. (2008). Metabonomics study on the effects of the ginsenoside Rg3 in a β-cyclodextrin-based formulation on tumor-bearing rats by a fully automatic hydrophilic interaction/reversed-phase column-switching HPLC − ESI-MS approach. Analytical Chemistry, 80(12), 4680–4688.CrossRefPubMedGoogle Scholar
  26. Wishart, D. S., Jewison, T., Guo, A. C., et al. (2013). HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Research, 4, D801–D807. (Database issue).CrossRefGoogle Scholar
  27. Wu, Q., Yuan, H., Zhang, L., & Zhang, Y. (2012). Recent advances on multidimensional liquid chromatography–mass spectrometry for proteomics: From qualitative to quantitative analysis—A review. Analytica Chimica Acta, 731, 1–10.CrossRefPubMedGoogle Scholar
  28. Yin, P., Wan, D., Zhao, C., et al. (2009). A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Molecular BioSystems, 5(8), 868–876.CrossRefPubMedGoogle Scholar
  29. Young, J. E., Matyska, M. T., & Pesek, J. J. (2011). Liquid chromatography/mass spectrometry compatible approaches for the quantitation of folic acid in fortified juices and cereals using aqueous normal phase conditions. Journal of Chromatography A, 1218(15), 2121–2126.CrossRefPubMedGoogle Scholar
  30. Zhang, T., Creek, D. J., Barrett, M. P., Blackburn, G., & Watson, D. G. (2012). Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with orbitrap mass spectrometry for metabolomic studies of human urine. Analytical Chemistry, 84(4), 1994–2001.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • James S. Pyke
    • 1
    • 2
  • Damien L. Callahan
    • 1
    • 3
  • Komal Kanojia
    • 1
  • Jairus Bowne
    • 1
  • Sheena Sahani
    • 1
  • Dedreia Tull
    • 1
  • Antony Bacic
    • 1
    • 4
  • Malcolm J. McConville
    • 1
    • 5
  • Ute Roessner
    • 1
  1. 1.Metabolomics Australia, School of Botany and Bio21 InstituteThe University of MelbourneParkvilleAustralia
  2. 2.Agilent TechnologiesMulgraveAustralia
  3. 3.Center for Chemistry and Biotechnology, School of Life and Environmental ScienceDeakin UniversityBurwoodAustralia
  4. 4.ARC Centre of Excellence in Plant Cell Walls, School of BotanyThe University of MelbourneParkvilleAustralia
  5. 5.Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleAustralia

Personalised recommendations