, Volume 11, Issue 5, pp 1231–1242 | Cite as

Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR

  • Tangi Jézéquel
  • Catherine Deborde
  • Mickaël Maucourt
  • Vanessa Zhendre
  • Annick Moing
  • Patrick GiraudeauEmail author
Original Article


Quantitative NMR metabolomics is a powerful tool to have access to valuable information on metabolism. Unfortunately, the quantitative analysis of metabolic samples is often hampered by peak overlap. Two-dimensional (2D) spectroscopy offers a promising alternative and quantitative results can be obtained provided that a calibration approach is employed. However, the duration of 2D NMR experiments is barely compatible with the metabolomic study of a large number of samples. This drawback can be circumvented by relying on “ultrafast” experiments capable of recording 2D spectra in a single-scan. While such experiments are not sensitive enough to match the concentrations of metabolic samples, a compromise can be reached by hybrid strategies capable of recording 2D NMR spectra of extracts in a few minutes only. The purpose of this study is to demonstrate that these multi-scan single-shot experiments can be successfully applied to the absolute quantification of major metabolites in plant extracts. Fast COSY experiments are recorded in 5 min on tomato fruit pericarp extracts at different stages of development. The concentration of eight major metabolites is determined with a trueness better than 10 % and a technical repeatability of a few percent. The experiments performed at two magnetic fields lead to similar quantitative results, in coherence with the metabolism of tomato fruit. The results show that fast 2D NMR methods form a promising tool for fast targeted metabolomics, and open promising perspective towards the automated and high-throughput quantitative analysis of large groups of plant and other samples for metabolomics and for the modelling of metabolism.


NMR Quantitative analysis Ultrafast 2D NMR COSY Tomato Extracts 



The authors are grateful to Dr Estelle Martineau, Prof Serge Akoka and Prof Gérald Remaud for fruitful discussions, and acknowledge Michel Giraudeau for linguistic assistance. They thank Pierre Gaillard and Jacques Longuesserre from INVENIO for help in organizing the greenhouse experiment and Emilie Labadie for technical help in the greenhouse. They also thank Dr Camille Bénard, Dr Benoit Biais, Patricia Ballias and other colleagues of the Fruit Biology and Pathology Research Unit (UMR1332) for their crucial contribution during culture follow up, harvests and sample preparation, and Daniel Jacob for help with spectra and metadata uploading into MetaboLights. This research was supported by a young investigator starting grant from the “Agence Nationale de la Recherche” (ANR grant 2010-JCJC-0804-01), the European project Eranet EraSysBio + “FRuit Integrative Modelling”, the CORSAIRE metabolomics facility, the Bordeaux Metabolome Facility and MetaboHUB (ANR-11-INBS-0010 project).

Conflict of interest

The authors declare that there are no conflicts of interest.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Supplementary material

11306_2015_780_MOESM1_ESM.docx (18 kb)
Supplementary Tables containing information on the sample preparation and on the 2D NMR quantification are available online (DOCX 17 kb)


  1. Allwood, J. W., de Vos, C. H. R., Moing, A., Deborde, C., Erban, A., Kopka, J., et al. (2011). Plant metabolomics and its potential for systems biology research: Background concepts, technology and methodology. Methods in Enzymology, 500, 299–336.CrossRefPubMedGoogle Scholar
  2. Aue, W. P., Bartholdi, E., & Ernst, R. R. (1976). Two-dimensional spectroscopy. Application to nuclear magnetic resonance. Journal of Chemical Physics, 64, 2229–2246.CrossRefGoogle Scholar
  3. Beauvoit, B. P., Colombié, S., Monier, A., Andrieu, M., Biais, B., Bénard, C., et al. (2014). Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. Plant Cell, 26, 3224–3242.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Beckonert, O., Keun, H. C., Ebbels, T. M. D., Bundy, J., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2, 2692–2703.CrossRefPubMedGoogle Scholar
  5. Biais, B., Bénard, C., Beauvoit, B., Colombié, S., Prodhomme, D., Ménard, G., et al. (2014). Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiology, 164, 1204–1221.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bingol, K., Zhang, F., Brüschweiler-Li, L., & Brüschweiler, R. (2013). Quantitative analysis of metabolic mixtures by two-dimensional 13C constant-time TOCSY NMR spectroscopy. Analytical Chemistry, 85, 6414–6420.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Boggio, S. B., Palatnik, J. F., Heldt, H. W., & Valle, E. M. (2000). Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Science, 159, 125–133.CrossRefPubMedGoogle Scholar
  8. Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., et al. (2006). Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiology, 142, 1380–1396.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Carrari, F., & Fernie, A. R. (2006). Metabolic regulation underlying tomato fruit developement. Journal of Experimental Botany, 57, 1883–1897.CrossRefPubMedGoogle Scholar
  10. Colombié, S., Nazaret, C., Bénard, C., Biais, B., Mengin, V., Solé, M., et al. (2015). Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing tomato fruit. Plant Journal, 81, 24–39.PubMedCentralCrossRefPubMedGoogle Scholar
  11. de Vos, R. C. H., Hall, R., Moing, A. (2011). Metabolomics of a model fruit: tomato. In: Hall, R. (ed) Biology of plant metabolomics. Annual plant reviews, vol 43. (pp. 109–115). Oxford: Wiley-Blackwell Ltd.Google Scholar
  12. Deborde, C., Maucourt, M., Baldet, P., Bernillon, S., Biais, B., Talon, G., et al. (2009). Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit. Metabolomics, 5, 183–198.CrossRefGoogle Scholar
  13. Frydman, L., Lupulescu, A., & Scherf, T. (2003). Principles and features of single-scan two-dimensional NMR spectroscopy. Journal of the American Chemical Society, 125, 9204–9217.CrossRefPubMedGoogle Scholar
  14. Frydman, L., Scherf, T., & Lupulescu, A. (2002). The acquisition of multidimensional NMR spectra within a single scan. Proceedings of the National Academy of Sciences United States of America, 99, 15858–15862.CrossRefGoogle Scholar
  15. Gal, M., Frydman, L. (2010). Ultrafast multidimensional NMR: principles and practice of single-scan methods. In: Morris, G. A., J. W. Emsley (eds) Encyclopedia of magnetic resonance. (pp. 43–60). Chichester: Wiley.Google Scholar
  16. Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.CrossRefPubMedGoogle Scholar
  17. Giraudeau, P. (2014). Quantitative 2D liquid-state NMR. Magnetic Resonance in Chemistry, 52, 259–272.CrossRefPubMedGoogle Scholar
  18. Giraudeau, P., & Akoka, S. (2011). Sensitivity and lineshape improvement in ultrafast 2D NMR by optimized apodization in the spatially encoded dimension. Magnetic Resonance in Chemistry, 49, 307–313.CrossRefPubMedGoogle Scholar
  19. Giraudeau, P., & Akoka, S. (2013). Fast and ultrafast quantitative 2D NMR: Vital tools for efficient metabolomic approaches. Advances in Botanical Research, 67, 99–158.CrossRefGoogle Scholar
  20. Giraudeau, P., & Frydman, L. (2014). Ultrafast 2D NMR: An emerging tool in analytical spectroscopy. Annual Review of Analytical Chemistry, 7, 129–161.CrossRefPubMedGoogle Scholar
  21. Giraudeau, P., Massou, S., Robin, Y., Cahoreau, E., Portais, J.-C., & Akoka, S. (2011). Ultrafast quantitative 2D NMR: An efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures. Analytical Chemistry, 83, 3112–3119.CrossRefPubMedGoogle Scholar
  22. Giraudeau, P., Remaud, G. S., & Akoka, S. (2009). Evaluation of ultrafast 2D NMR for quantitative analysis. Analytical Chemistry, 81, 479–484.CrossRefPubMedGoogle Scholar
  23. Gronwald, W., Klein, M. S., Kaspar, H., Fagerer, S. R., Nurnberger, N., Dettmer, K., et al. (2008). Urinary metabolite quantification employing 2D NMR spectroscopy. Analytical Chemistry, 80, 9288–9297.CrossRefPubMedGoogle Scholar
  24. Holzgrabe, U. (2010). Quantitative NMR spectroscopy in pharmaceutical applications. Progress in Nuclear Magnetic Resonance Spectroscopy, 57, 229–240.CrossRefPubMedGoogle Scholar
  25. Hu, F., Furihata, K., Kato, Y., & Tanokura, M. (2007). Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy. Journal of Agriculture and Food Chemistry, 55, 4307–4311.CrossRefGoogle Scholar
  26. ICH-Q2(R1) (1995). Validation of analytical procedures: text and methodology.
  27. Jeener, J. (1971). Lecture presented at Ampere International Summer School II. Yugoslavia: Basko Polje.Google Scholar
  28. Kazimierczuk, K., Stanek, J., Zawadzka-Kazimierczuk, A., & Koźmiński, W. (2010). Random sampling in multidimensional NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 57, 420–434.CrossRefPubMedGoogle Scholar
  29. Koskela, H. (2009). Quantitative 2D NMR studies. Annual Reports on NMR Spectroscopy, 66, 1–31.CrossRefGoogle Scholar
  30. Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56, 255–265.CrossRefPubMedGoogle Scholar
  31. Kruger, N. J., Troncoso-Ponce, M. A., & Ratcliffe, R. G. (2008). 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nature Protocols, 3, 1001–1012.CrossRefPubMedGoogle Scholar
  32. Kupce, E., & Freeman, R. (2003). Two-dimensional Hadamard spectroscopy. Journal of Magnetic Resonance, 162, 300–310.CrossRefPubMedGoogle Scholar
  33. Kupce, E., & Freeman, R. (2007). Fast multidimensional NMR by polarization sharing. Magnetic Resonance in Chemistry, 45, 2–4.CrossRefPubMedGoogle Scholar
  34. Le Gall, G., Colquhoun, I. J., Davis, A. L., Collins, G. J., & Verhoeyen, M. E. (2003). Metabolite profiling of tomato (Lycopersicon esculentum) Using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agriculture and Food Chemistry, 51, 2447–2456.CrossRefGoogle Scholar
  35. Le Guennec, A., Giraudeau, P., & Caldarelli, S. (2014). Evaluation of fast 2D NMR for metabolomics. Analytical Chemistry, 86, 5946–5954.CrossRefPubMedGoogle Scholar
  36. Le Guennec, A., Tea, I., Antheaume, I., Martineau, E., Charrier, B., Pathan, M., et al. (2012). Fast determination of absolute metabolite concentrations by spatially-encoded 2D NMR: Application to breast cancer cell extracts. Analytical Chemistry, 84, 10831–10837.CrossRefPubMedGoogle Scholar
  37. Lewis, I. A., Schommer, S. C., Hodis, B., Robb, K. A., Tonelli, M., Westler, W., et al. (2007). Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Analytical Chemistry, 79, 9385–9390.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Ludwig, C., & Viant, M. R. (2010). Two-dimensional J-resolved NMR spectroscopy: Review of a key methodology in the metabolomics toolbox. Phytochemical Analysis, 21, 22–32.CrossRefPubMedGoogle Scholar
  39. Malz, F., & Jancke, H. (2005). Validation of quantitative NMR. Journal of Pharmaceutical and Biomedical Analysis, 38, 813–823.CrossRefPubMedGoogle Scholar
  40. Martineau, E., Tea, I., Akoka, S., & Giraudeau, P. (2012). Absolute quantification of metabolites in breast cancer cell extracts by quantitative 2D 1H INADEQUATE NMR. NMR in Biomedicine, 25, 985–992.CrossRefPubMedGoogle Scholar
  41. Moing, A., Maucourt, M., Renaud, C., Gaudillere, M., Brouquisse, R., Lebouteiller, B., et al. (2004). Quantitative metabolic profiling by one-dimensional H-1-NMR analyses: Application to plant genetics and functional genomics. Functional Plant Biology, 31, 889–902.CrossRefGoogle Scholar
  42. Morris, G. A. (1992). Systematic sources of signal irreproducibility and t1 noise in high field NMR spectrometers. Journal of Magnetic Resonance, 100, 316–328.Google Scholar
  43. Mounet, F., Lemaire-Chamley, M., Maucourt, M., Cabasson, C., Giraudel, J., Deborde, C., et al. (2007). Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Complementary analysis with ANN and PCA. Metabolomics, 3, 273–288.CrossRefGoogle Scholar
  44. Nielsen, J., & Oliver, S. (2005). The next wave in metabolome analysis. Trends in Biotechnology, 23, 544–546.CrossRefPubMedGoogle Scholar
  45. Pathan, M., Akoka, S., Tea, I., Charrier, B., & Giraudeau, P. (2011). Multi-scan single shot” quantitative 2D NMR: A valuable alternative to fast conventional quantitative 2D NMR. Analyst, 136, 3157–3163.CrossRefPubMedGoogle Scholar
  46. Pathan, M., Charrier, B., Tea, I., Akoka, S., & Giraudeau, P. (2013). New practical tools for the implementation and use of ultrafast 2D NMR experiments. Magnetic Resonance in Chemistry, 51, 168–175.CrossRefPubMedGoogle Scholar
  47. Queiroz Junior, L. H. K., Ferreira, A. G., & Giraudeau, P. (2013). Optimization and practical implementation of ultrafast 2D NMR experiments. Quimica Nova, 26, 577–581.CrossRefGoogle Scholar
  48. Ravanbakhsh, S., Liu, P., Bjorndahl, T., Mandal, R., Grant, J. R., Wilson, M., Eisner, R., Sinelnikov, I., Hu, X., Luchinat, C., Greiner, R., Wishart, D. S. (2014). Accurate, fully-automated NMR spectral profiling for metabolomics. arXiv:14091456v3
  49. Rouger, L., Charrier, B., Pathan, M., Akoka, S., & Giraudeau, P. (2014). Processing strategies to obtain clean interleaved ultrafast 2D NMR spectra. Journal of Magnetic Resonance, 238, 87–93.CrossRefPubMedGoogle Scholar
  50. Schanda, P. (2009). Fast-pulsing longitudinal relaxation optimized techniques: Enriching the toolbox of fast biomolecular NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 55, 238–265.CrossRefGoogle Scholar
  51. Schanda, P., Van Melckebeke, H., & Brutscher, B. (2006). Speeding up three-dimensional protein NMR experiments to a few minutes. Journal of the American Chemical Society, 128, 9042–9043.CrossRefPubMedGoogle Scholar
  52. Schulze-Sünninghausen, D., Becker, J., & Luy, B. (2014). Rapid heteronuclear single quantum correlation NMR spectra at natural abundance. Journal of the American Chemical Society, 136, 1242–1245.CrossRefPubMedGoogle Scholar
  53. Shrot, Y., & Frydman, L. (2009). Spatial/spectral encoding of the spin interactions in ultrafast multidimensional NMR. Journal of Chemical Physics, 131, 224516.CrossRefPubMedGoogle Scholar
  54. Slupsky, C. M., Rankin, K. N., Wagner, J., Fu, H., Chang, D., Weljie, A. M., et al. (2007). Investigations of the effects of gender, diurnal variation and age in human urinary metabolomic profiles. Analytical Chemistry, 79, 6995–7004.CrossRefPubMedGoogle Scholar
  55. Tal, A., & Frydman, L. (2010). Single-scan multidimensional magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 57, 241–292.CrossRefPubMedGoogle Scholar
  56. Tredwell, G. D., Behrends, V., Geier, F. M., Liebeke, M., & Bundy, J. G. (2011). Between-person comparison of metabolite fitting for NMR-based quantitative metabolomics. Analytical Chemistry, 83, 8683–8687.CrossRefPubMedGoogle Scholar
  57. Vitorge, B., Bieri, S., Humam, M., Christen, P., Hostettmann, K., Munoz, O., et al. (2009). High-precision heteronuclear 2D NMR experiments using 10-ppm spectral window to resolve carbon overlap. Chemical Communications, (8), 950–952.Google Scholar
  58. Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442.CrossRefPubMedGoogle Scholar
  59. Wishart, D. S. (2008). Quantitative metabolomics using NMR. Trac-Trends in Analytical Chemistry, 27, 228–237.CrossRefGoogle Scholar
  60. Zulak, K. G., Weljie, A. M., Vogel, H. J., & Facchini, P. J. (2008). Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology, 8, 5.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tangi Jézéquel
    • 1
    • 2
  • Catherine Deborde
    • 2
    • 3
  • Mickaël Maucourt
    • 2
    • 4
  • Vanessa Zhendre
    • 2
  • Annick Moing
    • 2
    • 3
  • Patrick Giraudeau
    • 1
    • 5
    Email author
  1. 1.EBSI Team, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)Université de Nantes, CNRS, UMR 6230, Faculté des Sciences, LUNAM UniversitéNantes Cedex 03France
  2. 2.Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle BordeauxIBVM, Centre INRA BordeauxVillenave d’OrnonFrance
  3. 3.INRA, UMR1332 Biologie du Fruit et Pathologie, Centre INRA BordeauxINRAVillenave d’OrnonFrance
  4. 4.Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Centre INRA BordeauxUniversité de BordeauxVillenave d’OrnonFrance
  5. 5.Institut Universitaire de FranceParisFrance

Personalised recommendations