Metabolomics

, Volume 11, Issue 5, pp 1082–1094 | Cite as

Exposure to ionizing radiation reveals global dose- and time-dependent changes in the urinary metabolome of rat

  • Tytus D. Mak
  • John B. Tyburski
  • Kristopher W. Krausz
  • John F. Kalinich
  • Frank J. Gonzalez
  • Albert J. FornaceJr.
Original Article

Abstract

The potential for exposures to ionizing radiation (IR) has increased in recent years. Although advances have been made, understanding the global metabolic response as a function of both dose and exposure time is challenging considering the complexity of the responses. Herein we report our findings on the dose- and time-dependency of the urinary response to IR in the male rat using radiation metabolomics. Urine samples were collected from adult male rats, exposed to 0.5–10 Gy γ-radiation, both before from 6 to 72 h following exposures. Samples were analyzed by liquid chromatography coupled with time-of-flight mass spectrometry, and deconvoluted mass chromatographic data were initially analyzed by principal component analysis. However, the breadth and complexity of the data necessitated the development of a novel approach to summarizing biofluid constituents after exposure, called Visual Analysis of Metabolomics Package (VAMP). VAMP revealed clear urine metabolite profile differences to as little as 0.5 Gy after 6 h exposure. Via VAMP, it was discovered that the response to radiation exposure found in rat urine is characterized by an overall net down-regulation of ion excretion with only a modest number of ions excreted in excess over pre-exposure levels. Our results show both similarities and differences with the published mouse urine response and a dose- and time-dependent net decrease in urine ion excretion associated with radiation exposure. These findings mark an important step in the development of minimally invasive radiation biodosimetry. VAMP should have general applicability in metabolomics to visualize overall differences and trends in many sample sets.

Keywords

Radiation Biodosimetry Bioinformatics 

Abbreviations

DMS–MS

Differential mobility spectrometry–mass spectrometry

AFRRI

Armed Forces Radiobiology Research Institute

MS

Mass spectrometer

UPLC–TOFMS

Ultra-performance liquid chromatography–time of flight mass spectrometry

ESI

Electrospray ionization

ESI+

Positive ESI

ESI−

Negative ESI

PCA

Principal component analysis

PC

Principal component

IR

Ionizing radiation

IS

Internal standard

ppm

Parts per million

CI

Confidence interval

VAMP

Visual Analysis of Metabolomics Package

Supplementary material

11306_2014_765_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4374 kb)
11306_2014_765_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 kb)

References

  1. Amendola, R., Basso, E., Pacifici, P. G., Piras, E., Giovanetti, A., Volpato, C., et al. (2006). Ret, Abl1 (cAbl) and Trp53 gene fragmentations in comet-FISH assay act as in vivo biomarkers of radiation exposure in C57BL/6 and CBA/J mice. Radiation Research, 165, 553–561.CrossRefPubMedGoogle Scholar
  2. Castro-Perez, J., Plumb, R., Granger, J. H., Beattie, I., Joncour, K., & Wright, A. (2005). Increasing throughput and information content for in vitro drug metabolism experiments using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer. Rapid Communications in Mass Spectrometry, 19, 843–848.CrossRefPubMedGoogle Scholar
  3. Chen, C., Brenner, D. J., & Brown, T. R. (2011). Identification of urinary biomarkers from X-irradiated mice using NMR spectroscopy. Radiation Research, 175, 622–630.CrossRefPubMedGoogle Scholar
  4. Christodouleas, J. P., Forrest, R. D., Ainsley, C. G., Tochner, Z., Hahn, S. M., & Glatstein, E. (2011). Short-term and long-term health risks of nuclear-power-plant accidents. New England Journal of Medicine, 364, 2334–2341.CrossRefPubMedGoogle Scholar
  5. Coy, S. L., Cheema, A. K., Tyburski, J. B., Laiakis, E. C., Collins, S. P., & Fornace, A. J. (2011). Radiation metabolomics and its potential in biodosimetry. International Journal of Radiation Biology, 87, 802–823.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Coy, S. L., Krylov, E. V., Schneider, B. B., Covey, T. R., Brenner, D. J., Tyburski, J. B., et al. (2010). Detection of radiation-exposure biomarkers by differential mobility prefiltered mass spectrometry (DMS-MS). International Journal of Mass Spectrometry, 291, 108–117.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Dewey, W. C., & Humphrey, R. M. (1965). Increase in radiosensitivity to ionizing radiation related to replacement of thymidine in mammalian cells with 5-bromodeoxyuridine. Radiation Research, 26, 538–553.CrossRefPubMedGoogle Scholar
  8. Dizdaroglu, M., & Simic, M. G. (1984). Radiation-induced crosslinking of cytosine. Radiation Research, 100, 41–46.CrossRefPubMedGoogle Scholar
  9. Dunn, S. R., Qi, Z., Bottinger, E. P., Breyer, M. D., & Sharma, K. (2004). Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney International, 65, 1959–1967.CrossRefPubMedGoogle Scholar
  10. Grace, M. B., Moyer, B. R., Prasher, J., Cliffer, K. D., Ramakrishnan, N., Kaminski, J., et al. (2010). Rapid radiation dose assessment for radiological public health emergencies: Roles of NIAID and BARDA. Health Physics, 98, 172–178.CrossRefPubMedGoogle Scholar
  11. Hafer, N., Cassatt, D., Dicarlo, A., Ramakrishnan, N., Kaminski, J., Norman, M. K., et al. (2010). NIAID/NIH radiation/nuclear medical countermeasures product research and development program. Health Physics, 98, 903–905.CrossRefPubMedGoogle Scholar
  12. Johnson, C. H., Patterson, A. D., Krausz, K. W., Kalinich, J. F., Tyburski, J. B., Kang, D. W., et al. (2012). Radiation Metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiation Research, 178, 328–340.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Johnson, C. H., Patterson, A. D., Krausz, K. W., Lanz, C., Kang, D. W., Luecke, H., et al. (2011). Radiation metabolomics. 4. UPLC-ESI-QTOFMS-based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiation Research, 175, 473–484.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Kermani, P., Leclerc, G., Martel, R., & Fareh, J. (2001). Effect of ionizing radiation on thymidine uptake, differentiation, and VEGFR2 receptor expression in endothelial cells: the role of VEGF(165). International Journal of Radiation Oncology Biology Physics, 50, 213–220.CrossRefGoogle Scholar
  15. Khan, A. R., Rana, P., Devi, M. M., Chaturvedi, S., Javed, S., Tripathi, R. P., et al. (2011). Nuclear magnetic resonance spectroscopy-based metabonomic investigation of biochemical effects in serum of gamma-irradiated mice. International Journal of Radiation Biology, 87, 91–97.CrossRefPubMedGoogle Scholar
  16. Kurohara, S. S., & Altman, K. I. (1962). Effect of exposure to ionizing radiation on creatine concentration in human and rat erythrocytes. Nature, 196, 151–153.CrossRefGoogle Scholar
  17. Lanz, C., Patterson, A. D., Slavik, J., Krausz, K. W., Ledermann, M., Gonzalez, F. J., et al. (2009). Radiation metabolomics. 3. Biomarker discovery in the urine of gamma-irradiated rats using a simplified metabolomics protocol of gas chromatography-mass spectrometry combined with random forests machine learning algorithm. Radiation Research, 172, 198–212.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Lee, S. H., Jo, S. H., Lee, S. M., Koh, H. J., Song, H., Park, J. W., et al. (2004). Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays. International Journal of Radiation Biology, 80, 635–642.CrossRefPubMedGoogle Scholar
  19. Lee, H. J., Lee, M., Kang, C. M., Jeoung, D., Bae, S., Cho, C. K., et al. (2007). Identification of possible candidate biomarkers for local or whole body radiation exposure in C57BL/6 mice. International Journal of Radiation Oncology Biology Physics, 69, 1272–1281.CrossRefGoogle Scholar
  20. Mak, T. D., Laiakis, E. C., Goudarzi, M., & Fornace, A. J, Jr. (2014). MetaboLyzer: A novel statistical workflow for analyzing postprocessed LC-MS metabolomics data. Analytical Chemistry, 86, 506–513.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Mansour, H. H. (2006). Protective role of carnitine ester against radiation-induced oxidative stress in rats. Pharmacological Research, 54, 165–171.CrossRefPubMedGoogle Scholar
  22. Noda, I. (2008). Scaling techniques to enhance two-dimensional correlation spectra. J Molecular Structure, 883, 216–227.CrossRefGoogle Scholar
  23. Ossetrova, N. I., Sandgren, D. J., Gallego, S., & Blakely, W. F. (2010). Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications. Health Physics, 98, 204–208.CrossRefPubMedGoogle Scholar
  24. Partridge, M. A., Chai, Y., Zhou, H., & Hei, T. K. (2010). High-throughput antibody-based assays to identify and quantify radiation-responsive protein biomarkers. International Journal of Radiation Biology, 86, 321–328.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559–572.CrossRefGoogle Scholar
  26. Plumb, R., Castro-Perez, J., Granger, J., Beattie, I., Joncour, K., & Wright, A. (2004). Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 2331–2337.CrossRefPubMedGoogle Scholar
  27. Porciani, S., Lanini, A., Balzi, M., Faraoni, P., & Becciolini, A. (2001). Polyamines as biochemical indicators of radiation injury. Phys Med, 17(Suppl 1), 187–188.PubMedGoogle Scholar
  28. Randic, M., & Supek, Z. (1961). Urinary excretion of 5-hydroxyindolacetic acid after a single whole-body X-irradiation in normal and adrenalectomized rats. International Journal of Radiation Biology, 4, 151–153.CrossRefPubMedGoogle Scholar
  29. Reisz, J. A., Bansal, N., Qian, J., Zhao, W., & Furdui, C. M. (2014). Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxidants & Redox Signaling, 21, 260–292.CrossRefGoogle Scholar
  30. Roux, A., Lison, D., Junot, C., & Heilier, J. F. (2011). Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review. Clinical Biochemistry, 44, 119–135.CrossRefPubMedGoogle Scholar
  31. Sezen, O., Ertekin, M. V., Demircan, B., Karslioglu, I., Erdogan, F., Kocer, I., et al. (2008). Vitamin E and L-carnitine, separately or in combination, in the prevention of radiation-induced brain and retinal damages. Neurosurg Rev, 31, 205–213. discussion 213.CrossRefPubMedGoogle Scholar
  32. Takahashi, N., Boysen, G., Li, F., Li, Y., & Swenberg, J. A. (2007). Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate. Kidney International, 71, 266–271.CrossRefPubMedGoogle Scholar
  33. Tang, X., Zheng, M., Zhang, Y., Fan, S., & Wang, C. (2013). Estimation value of plasma amino acid target analysis to the acute radiation injury early triage in the rat model. Metabolomics, 9, 853–863.CrossRefGoogle Scholar
  34. Tyburski, J. B., Patterson, A. D., Krausz, K. W., Slavik, J., Fornace, A. J. J., Gonzalez, F. J., et al. (2008). Radiation metabolomics. 1. Identification of minimally invasive urine biomarkers for gamma-radiation exposure in mice. Radiation Research, 170, 1–14.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Tyburski, J. B., Patterson, A. D., Krausz, K. W., Slavik, J., Fornace, A. J, Jr, Gonzalez, F. J., et al. (2009). Radiation metabolomics. 2. Dose- and time-dependent urinary excretion of deaminated purines and pyrimidines after sublethal gamma-radiation exposure in mice. Radiation Research, 172, 42–57.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Visser, W., Van Roermund, C., Ijlst, L., Waterham, H., & Wanders, R. (2007). Metabolite transport across the peroxisomal membrane. Biochemical Journal, 401, 365–375.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Zhang, Y., Zhou, X., Li, C., Wu, J., Kuo, J. E., & Wang, C. (2014). Assessment of early triage for acute radiation injury in rat model based on urinary amino acid target analysis. Molecular BioSystems, 10, 1441–1449.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tytus D. Mak
    • 1
  • John B. Tyburski
    • 2
  • Kristopher W. Krausz
    • 3
  • John F. Kalinich
    • 4
  • Frank J. Gonzalez
    • 3
  • Albert J. FornaceJr.
    • 1
    • 2
  1. 1.Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonUSA
  2. 2.Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashingtonUSA
  3. 3.Laboratory of Metabolism, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  4. 4.Armed Forces Radiobiology Research InstituteUniformed Services UniversityBethesdaUSA

Personalised recommendations