, Volume 11, Issue 4, pp 787–796 | Cite as

The Warburg effect: a balance of flux analysis

  • B. Vaitheesvaran
  • J. Xu
  • J. Yee
  • Q.-Y. Lu
  • V. L. Go
  • G. G. Xiao
  • W.-N. LeeEmail author
Review Article


Cancer metabolism is characterized by increased macromolecular syntheses through coordinated increases in energy and substrate metabolism. The observation that cancer cells produce lactate in an environment of oxygen sufficiency (aerobic glycolysis) is a central theme of cancer metabolism known as the Warburg effect. Aerobic glycolysis in cancer metabolism is accompanied by increased pentose cycle and anaplerotic activities producing energy and substrates for macromolecular synthesis. How these processes are coordinated is poorly understood. Recent advances have focused on molecular regulation of cancer metabolism by oncogenes and tumor suppressor genes which regulate numerous enzymatic steps of central glucose metabolism. In the past decade, new insights in cancer metabolism have emerged through the application of stable isotopes particularly from 13C carbon tracing. Such studies have provided new evidence for system-wide changes in cancer metabolism in response to chemotherapy. Interestingly, experiments using metabolic inhibitors on individual biochemical pathways all demonstrate similar system-wide effects on cancer metabolism as in targeted therapies. Since biochemical reactions in the Warburg effect place competing demands on available precursors, high energy phosphates and reducing equivalents, the cancer metabolic system must fulfill the condition of balance of flux (homeostasis). In this review, the functions of the pentose cycle and of the tricarboxylic acid (TCA) cycle in cancer metabolism are analyzed from the balance of flux point of view. Anticancer treatments that target molecular signaling pathways or inhibit metabolism alter the invasive or proliferative behavior of the cancer cells by their effects on the balance of flux (homeostasis) of the cancer metabolic phenotype.


Metabolic phenotype Tracer-based metabolomics Metabolic compartments Anaplerosis Energy metabolism 



This work was supported by the National Institutes of Health (P01AT003960) and the Hirshberg Foundation for Pancreatic Cancer Research, V.B.P was supported by DK58132-01A2 and NIAID Grant U19AI091175-01.

Conflict of interest

The authors have no conflicts of interest to disclose.

Compliance with Ethical Requirements

This article does not contain any studies with human or animal subjects.

Supplementary material

11306_2014_760_MOESM1_ESM.jpg (228 kb)
Supplemental Figure S1: Glycolytic/gluconeogenic pathways and their regulation. The regulation of glycolysis is accomplished through a series of futile cycles (shown as double arrows) and reversible reactions (shown as single bidirectional arrows). The direction of flux is regulated by multiple connected pathways. In addition, it is controlled by expression and/or activation of enzymes. Since glucose is needed for numerous substrate syntheses, multiple regulatory points (double arrows) are necessary to achieve fine control of glucose flux and its directions. HEX stands for hexokinase; G6Pase, glucose-6-phosphatase; GS glycogen synthase; GP, glycogenphosphorylase; PFK, phosphofructose kinase; GAPDH, glyceraldehyde 3 phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase; PKM, pyruvate kinase isozymes M1/M2 and LDH, lactate dehydrogenase. These key control points are regulated by oncogenes and cancer suppressor genes (D’Alessandro and Zolla 2012). (JPEG 228 kb)
11306_2014_760_MOESM2_ESM.jpg (333 kb)
Supplemental Figure S2: Balance of flux equations for anaplerotic reactions. These reactions allow communication (substrate exchange) between cytosolic and mitochondrial compartments. Not included in the OAA or malate balance are equations for transamination, PEPCK, maleic reaction. Together with reactions from Figure 5, these reactions form the basis for the balance of flux model of TCA cycle compartment. (JPEG 332 kb)


  1. Boren, J., et al. (2001). Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. Journal of Biological Chemistry, 276, 37747–37753.PubMedGoogle Scholar
  2. Boren, J., et al. (2003). The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. Journal of Biological Chemistry, 278, 28395–28402. doi: 10.1074/jbc.M302932200.PubMedCrossRefGoogle Scholar
  3. Boros, L. G., Torday, J. S., Lim, S., Bassilian, S., Cascante, M., & Lee, W. N. (2000). Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Research, 60, 1183–1185.PubMedGoogle Scholar
  4. Boros, L. G., Bassilian, S., Lim, S., & Lee, W. N. (2001). Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: a new mechanism of controlling tumor growth. Pancreas, 22, 1–7.PubMedCrossRefGoogle Scholar
  5. Boros, L. G., Cascante, M., & Lee, W. N. (2002a). Metabolic profiling of cell growth and death in cancer: Applications in drug discovery. Drug Discovery Today, 7, 364–372.PubMedCrossRefGoogle Scholar
  6. Boros, L. G., Lee, W. N., & Go, V. L. (2002b). A metabolic hypothesis of cell growth and death in pancreatic cancer. Pancreas, 24, 26–33.PubMedCrossRefGoogle Scholar
  7. Boros, L. G., Torday, J. S., Lee, W. N., & Rehan, V. K. (2002c). Oxygen-induced metabolic changes and transdifferentiation in immature fetal rat lung lipofibroblasts. Molecular Genetics and Metabolism, 77, 230–236.PubMedCrossRefGoogle Scholar
  8. Boros, L. G., Steinkamp, M. P., Fleming, J. C., Lee, W. N., Cascante, M., & Neufeld, E. J. (2003). Defective RNA ribose synthesis in fibroblasts from patients with thiamine-responsive megaloblastic anemia (TRMA). Blood, 102, 3556–3561. doi: 10.1182/blood-2003-05-1537.PubMedCrossRefGoogle Scholar
  9. Chaturvedi, A., et al. (2013). Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood, 122, 2877–2887. doi: 10.1182/blood-2013-03-491571.PubMedCrossRefGoogle Scholar
  10. Chen, C., et al. (2013). Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes & Development, 27, 1974–1985. doi: 10.1101/gad.226613.113.CrossRefGoogle Scholar
  11. Comin-Anduix, B., et al. (2001). The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. European Journal of Biochemistry, 268, 4177–4182.PubMedCrossRefGoogle Scholar
  12. D’Alessandro, A., & Zolla, L. (2012). Metabolomics and cancer drug discovery: Let the cells do the talking. Drug Discovery Today, 17, 3–9. doi: 10.1016/j.drudis.2011.09.017.PubMedCrossRefGoogle Scholar
  13. Edwards, J. S., Ramakrishna, R., & Palsson, B. O. (2002). Characterizing the metabolic phenotype: A phenotype phase plane analysis. Biotechnology and Bioengineering, 77, 27–36.PubMedCrossRefGoogle Scholar
  14. Faubert, B., et al. (2013). AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metabolism, 17, 113–124. doi: 10.1016/j.cmet.2012.12.001.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Feng, Z., & Levine, A. J. (2010). The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends in Cell Biology, 20, 427–434. doi: 10.1016/j.tcb.2010.03.004.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ferreira, L. M. (2010). Cancer metabolism: the Warburg effect today. Experimental and Molecular Pathology, 89, 372–380. doi: 10.1016/j.yexmp.2010.08.006.PubMedCrossRefGoogle Scholar
  17. Harris, D. M., Li, L., Chen, M., Lagunero, F. T., Go, V. L., & Boros, L. G. (2012). Diverse mechanisms of growth inhibition by luteolin, resveratrol, and quercetin in MIA PaCa-2 cells: A comparative glucose tracer study with the fatty acid synthase inhibitor C75. Metabolomics, 8, 201–210. doi: 10.1007/s11306-011-0300-9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Katz, J., & McGarry, J. D. (1984). The glucose paradox. Is glucose a substrate for liver metabolism? Journal of Clinical Investigation, 74, 1901–1909. doi: 10.1172/jci111610.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Katz, J., Lee, W. N., Wals, P. A., & Bergner, E. A. (1989). Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with [U-13C]glucose in rats. Journal of Biological Chemistry, 264, 12994–13004.PubMedGoogle Scholar
  20. Katz, J., Wals, P., & Lee, W. N. (1993). Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate. Journal of Biological Chemistry, 268, 25509–25521.PubMedGoogle Scholar
  21. Kim, J.-W., Gardner, L. B., & Dang, C. V. (2005). Oncogenic alterations of metabolism and the Warburg effect. Drug Discovery Today: Disease Mechanisms, 2, 233–238. doi: 10.1016/j.ddmec.2005.04.001.CrossRefGoogle Scholar
  22. Kurland, I. J., Alcivar, A., Bassilian, S., & Lee, W. N. (2000). Loss of [13C]glycerol carbon via the pentose cycle. Implications for gluconeogenesis measurement by mass isotoper distribution analysis. Journal of Biological Chemistry, 275, 36787–36793. doi: 10.1074/jbc.M004739200.PubMedCrossRefGoogle Scholar
  23. Lee, W. N. (1993). Appendix. Analysis of tricarboxylic acid cycle using mass isotopomer ratios. Journal of Biological Chemistry, 268, 25522–25526.PubMedGoogle Scholar
  24. Lee, W. N. (2006). Characterizing phenotype with tracer based metabolomics. Metabolomics, 2, 31–39. doi: 10.1007/s11306-006-0017-3.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lee, W. N., Boros, L. G., Puigjaner, J., Bassilian, S., Lim, S., & Cascante, M. (1998). Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. American Journal of Physiology, 274, E843–E851.PubMedGoogle Scholar
  26. Lee, W. N., Edmond, J., Bassilian, S., & Morrow, J. W. (1996). Mass isotopomer study of glutamine oxidation and synthesis in primary culture of astrocytes. Developmental Neuroscience, 18, 469–477.PubMedCrossRefGoogle Scholar
  27. Lee, W. N., & Go, V. L. (2005). Nutrient-gene interaction: Tracer-based metabolomics. Journal of Nutrition, 135, 3027S–3032S.PubMedGoogle Scholar
  28. Lee, W. N., Guo, P., Lim, S., Bassilian, S., Lee, S. T., Boren, J., et al. (2004). Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment. British Journal of Cancer, 91, 2094–2100. doi: 10.1038/sj.bjc.6602243.
  29. Lee, W. N., Wahjudi, P. N., Xu, J., & Go, V. L. (2010). Tracer-based metabolomics: concepts and practices. Clinical Biochemistry, 43, 1269–1277. doi: 10.1016/j.clinbiochem.2010.07.027.PubMedCentralCrossRefGoogle Scholar
  30. Levine, A. J., & Puzio-Kuter, A. M. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330, 1340–1344. doi: 10.1126/science.1193494.PubMedCrossRefGoogle Scholar
  31. Lu, Q.-Y., Zhang, L., Yee, J., Go, V.-L., & Lee, W.-N. (2014). Metabolic consequences of LDHA inhibition by epigallocatechin gallate and oxamate in MIA PaCa-2 pancreatic cancer cells. Metabolomics. doi: 10.1007/s11306-014-0672-8.
  32. Ma, D., et al. (2012). Inhibition of glycogen phosphorylation induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells. Pancreas, 41, 397–408. doi: 10.1097/MPA.0b013e318236f022.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Malloy, C. R., Sherry, A. D., & Jeffrey, F. M. (1990). Analysis of tricarboxylic acid cycle of the heart using 13C isotope isomers. American Journal of Physiology, 259, H987–H995.PubMedGoogle Scholar
  34. Marin, S., et al. (2004). Dynamic profiling of the glucose metabolic network in fasted rat hepatocytes using [1,2-13C2]glucose. Biochemical Journal, 381, 287–294. doi: 10.1042/bj20031737.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Orth, J. D., Thiele, I., & Palsson, B. O. (2010). What is flux balance analysis? Nature Biotechnology, 28, 245–248. doi: 10.1038/nbt.1614.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Rais, B., et al. (1999). Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich’s tumor cells through inhibition of the pentose cycle. FEBS Letters, 456, 113–118.PubMedCrossRefGoogle Scholar
  37. Ramos-Montoya, A., et al. (2006). Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. International Journal of Cancer, 119, 2733–2741. doi: 10.1002/ijc.22227.CrossRefGoogle Scholar
  38. Reed, J. L., & Palsson, B. O. (2003). Thirteen years of building constraint-based in silico models of Escherichia coli. Journal of Bacteriology, 185, 2692–2699.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Rehan, V. K., et al. (2007). In utero nicotine exposure alters fetal rat lung alveolar type II cell proliferation, differentiation, and metabolism. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L323–L333. doi: 10.1152/ajplung.00071.2006.PubMedCrossRefGoogle Scholar
  40. Reitman, Z. J., et al. (2014). Cancer-associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and d-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia. Journal of Biological Chemistry, 289, 23318–23328. doi: 10.1074/jbc.M114.575183.PubMedCrossRefGoogle Scholar
  41. Schilling, C. H., & Palsson, B. O. (1998). The underlying pathway structure of biochemical reaction networks. Proceedings of the National Academy of Science USA, 95, 4193–4198.CrossRefGoogle Scholar
  42. Schilling, C. H., Letscher, D., & Palsson, B. O. (2000). Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Journal of Theoretical Biology, 203, 229–248. doi: 10.1006/jtbi.2000.1073.PubMedCrossRefGoogle Scholar
  43. Selivanov, V. A., et al. (2004). An optimized algorithm for flux estimation from isotopomer distribution in glucose metabolites. Bioinformatics, 20, 3387–3397. doi: 10.1093/bioinformatics/bth412.PubMedCrossRefGoogle Scholar
  44. Selivanov, V. A., et al. (2005). Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: An example from HT29 cancer cells. Bioinformatics, 21, 3558–3564. doi: 10.1093/bioinformatics/bti573.PubMedCrossRefGoogle Scholar
  45. Turcan, S., et al. (2013). Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget, 4, 1729–1736.PubMedCentralPubMedGoogle Scholar
  46. Upadhyay, M., Samal, J., Kandpal, M., Singh, O. V., & Vivekanandan, P. (2013). The Warburg effect: Insights from the past decade. Pharmacology & Therapeutics, 137, 318–330. doi: 10.1016/j.pharmthera.2012.11.003.CrossRefGoogle Scholar
  47. Vaitheesvaran, B., et al. (2014). Role of the tumor suppressor IQGAP2 in metabolic homeostasis: Possible link between diabetes and cancer. Metabolomics, 10, 920–937. doi: 10.1007/s11306-014-0639-9.PubMedCrossRefGoogle Scholar
  48. Vizan, P., et al. (2005). K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Research, 65, 5512–5515. doi: 10.1158/0008-5472.can-05-0074.PubMedCrossRefGoogle Scholar
  49. Wang, J., et al. (2013). Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Experimental Hematology & Oncology, 2, 18. doi: 10.1186/2162-3619-2-18.CrossRefGoogle Scholar
  50. Xu, J., Lee, W. N., Phan, J., Saad, M. F., Reue, K., & Kurland, I. J. (2006). Lipin deficiency impairs diurnal metabolic fuel switching. Diabetes, 55, 3429–3438. doi: 10.2337/db06-0260.PubMedCrossRefGoogle Scholar
  51. Yang, Y., et al. (2013). Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma. PLoS ONE, 8, e72179. doi: 10.1371/journal.pone.0072179.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Zhang, H., et al. (2010). Inhibition of protein phosphorylation in MIA pancreatic cancer cells: Confluence of metabolic and signaling pathways. Journal of Proteome Research, 9, 980–989. doi: 10.1021/pr9008805.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Zheng, J. (2012). Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology Letters, 4, 1151–1157. doi: 10.3892/ol.2012.928.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • B. Vaitheesvaran
    • 1
  • J. Xu
    • 2
  • J. Yee
    • 3
  • Q.-Y. Lu
    • 4
  • V. L. Go
    • 4
  • G. G. Xiao
    • 5
    • 6
  • W.-N. Lee
    • 3
    • 7
    Email author
  1. 1.Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core FacilityAlbert Einstein College of Medicine Diabetes CenterBronxUSA
  2. 2.Department of PathologyUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Division of Endocrinology and Metabolism, Department of PediatricsUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of MedicineUniversity of CaliforniaLos AngelesUSA
  5. 5.Functional Genomics/Proteomics Laboratories, Creighton University Medical CenterOmahaUSA
  6. 6.School of Pharmaceutical Science and Technology at Dalian University of TechnologyDalianChina
  7. 7.LA Biomedical Research InstituteTorranceUSA

Personalised recommendations