, Volume 11, Issue 4, pp 991–997 | Cite as

Identification of the 12-oxojasmonoyl-isoleucine, a new intermediate of jasmonate metabolism in Arabidopsis, by combining chemical derivatization and LC–MS/MS analysis

  • Emilie Widemann
  • Thierry Heitz
  • Laurence Miesch
  • Michel Miesch
  • Clément Heinrich
  • Franck Pinot
  • Raphaël LuganEmail author
Original Article


The Arabidopsis cytochrome P450 CYP94C1 is involved in the metabolism of jasmonates, a family of phytohormones implicated in plant development and responses to bioagressors. It has been shown to down-regulate the level of the active hormone jasmonoyl-isoleucine (JA-Ile) by catalyzing its successive oxidation into hydroxyl (12OH-JA-Ile) and carboxyl (12COOH-JA-Ile) derivatives. The systematic investigation of this enzymatic reaction in vitro reported here revealed the formation of a third oxidized product: UPLC–MS/MS data matched a possible aldehyde, an intermediate form between 12OH-JA-Ile and 12COOH-JA-Ile. To confirm the presence of an aldehyde group, the extracted metabolite from incubations were derivatized with methoxyamine, an agent known to target carbonyl functions specifically. UPLC–MS/MS analysis after derivatization confirmed the presence of 12-oxojasmonoyl-isoleucine (12CHO-JA-Ile). Methanolic extracts from Arabidopsis leaves were then investigated after wounding, a treatment that triggers the accumulation of JA-Ile and its oxidized derivatives. The 12CHO-JA-Ile produced a significant signal with the same order of magnitude than the other oxidized forms. This study illustrates the underestimated potential of chemical derivatization for rapid metabolite identification in modern metabolomics and enriches our knowledge of the jasmonates family.


Liquid chromatography–mass spectrometry (LC–MS) Chemical derivatization Jasmonates Cytochrome P450 



This work was supported by a doctoral fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche. It was also partially funded by the Agence Nationale de la Recherche grant ANR-12-BSV8-005. The UPLC–MS/MS instrument was co-financed by the Centre National de la Recherche Scientifique, the Université de Strasbourg, the Région Alsace, the Institut National de la Recherche Agronomique, and the Tepral Company.

Conflict of interest

All authors declare that they have no conflict of interest.

Compliance with ethical guidelines

This article does not contain any studies with human or animal subjects.


  1. Baker, M. (2011). Metabolomics: From small molecules to big ideas. Nature Methods, 8, 117–121.CrossRefGoogle Scholar
  2. Ballaré, C. (2011). Jasmonate-induced defenses: A tale of intelligence, collaborators and rascals. Trends in Plant Science, 16, 249–257.PubMedCrossRefGoogle Scholar
  3. Bell-Parikh, L. C., & Guengerich, F. P. (1999). Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. Journal of Biological Chemistry, 274, 23833–23840.PubMedCrossRefGoogle Scholar
  4. Berdyshev, E. V. (2011). Mass spectrometry of fatty aldehydes. Biochimica et Biophysica Acta, 1811, 680–693.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Di Donna, L., Taverna, D., Mazzotti, F., et al. (2013). Comprehensive assay of flavanones in citrus juices and beverages by UHPLC–ESI-MS/MS and derivatization chemistry. Food Chemistry, 141, 2328–2333.PubMedCrossRefGoogle Scholar
  6. Eggink, M., Witjmans, M., Ekkebus, R., et al. (2008). Development of a selective ESI-MS derivatization reagent: Synthesis and optimization for the analysis of aldehydes in biological mixtures. Analytical Chemistry, 80, 9042–9051.PubMedCrossRefGoogle Scholar
  7. Eggink, M., Witjmans, M., Kretschemer, A., et al. (2010). Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA. Analytical and Bioanalytical Chemistry, 397, 665–675.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331, 283–295.PubMedCrossRefGoogle Scholar
  9. Halket, J. M., Watermann, D., Przyborowska, A., Patel, R. K. P., Fraser, P. D., & Bramley, P. M. (2005). Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany, 56, 219–243.PubMedCrossRefGoogle Scholar
  10. Heitz, T., Widemann, E., Lugan, R., et al. (2012). Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. Journal of Biological Chemistry, 287, 6296–6306.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Höfer, R., Dong, L., André, F., et al. (2013). Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metabolic Engineering, 20, 221–232.PubMedCrossRefGoogle Scholar
  12. Jubault, M., Hamon, C., Gravot, A., et al. (2008). Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. Plant Physiology, 146, 2008–2019.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kind, T., & Fiehn, O. (2010). Advances in structure elucidation of small molecules using mass spectrometry. Bioanal Rev., 2, 23–60.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kitaoka, N., Matsubara, T., Sato, M., et al. (2011). Arabidopsis CYP94B3 encodes jasmonyl-l-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant and Cell Physiology, 10, 1757–1765.CrossRefGoogle Scholar
  15. Knapp, D. R. (1979). Handbook of analytical derivatization reactions. New York: Wiley.Google Scholar
  16. Kojima, M., Kamada-Nobusada, T., Komatsu, H., et al. (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: An application for hormone profiling in Oryza sativa. Plant and Cell Physiology, 50, 1201–1214.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Koo, A. J. K., Cooke, T. F., & Howe, G. A. (2011). Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine. Proceedings of the National Academy of Sciences of the United States of America, 22, 9298–9303.CrossRefGoogle Scholar
  18. Kramell, T., Schmidt, J., Schneider, G., Sembdner, G., & Schreiber, K. (1988). Synthesis of n-(jasmonoyl)amino acid conjugates. Tetrahedron, 44, 5791–5807.CrossRefGoogle Scholar
  19. Langrock, P., Czihal, P., & Hoffmann, R. (2006). Amino acid analysis by hydrophilic interaction chromatography coupled on-line to electrospray ionization mass spectrometry. Amino Acids, 30, 291–297.PubMedCrossRefGoogle Scholar
  20. Le Bouquin, R., Skrabs, M., Kahn, R., et al. (2001). CYP94A5, a new cytochrome P450 from Nicotiana tabacum is able to catalyze the oxidation of fatty acids to the v-alcohol and to the corresponding diacid. European Journal of Biochemistry, 268, 3083–3090.Google Scholar
  21. Lu, Y., Yao, D., & Chen, C. (2013). 2-Hydrazinoquinoline as a derivatization agent for LC–MS-based metabolomic investigation of diabetic ketoacidosis. Metabolites, 3, 993–1010.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lugan, R., Niogret, M.-F., Leport, L., et al. (2010). Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant Journal, 64, 215–229.PubMedCrossRefGoogle Scholar
  23. Miettinen, K., Dong, L., Navrot, N., et al. (2014). The seco-iridoid pathway from Catharanthus roseus. Nature Communications, 5, 1–11.Google Scholar
  24. Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13, 263–269.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Pompon, D., Louerat, B., Bronine, A., & Urban, P. (1996). Yeast expression of animal and plant P450s in optimized redox environments. Methods in Enzymology, 272, 51–64.PubMedGoogle Scholar
  26. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. The Plant Journal, 23, 131–142.PubMedCrossRefGoogle Scholar
  27. Scheller, U., Zimmer, T., Bercher, D., Schauer, F., & Schunk, W.-H. (1998). Oxygenation cascade in conversion of n-alkanes to α, ω-dioic acids catalyzed by cytochrome P450 52A3. Journal of Biological Chemistry, 273, 32528–32534.PubMedCrossRefGoogle Scholar
  28. Sumner, L. W., Amberg, A., Barett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211–221.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Wasternak, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100, 681–697.CrossRefGoogle Scholar
  30. Zaikin, V., & Kalket, J. M. (2009). A handbook of derivatives for mass spectrometry. West Sussex: IM Publications.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Emilie Widemann
    • 1
  • Thierry Heitz
    • 1
  • Laurence Miesch
    • 2
  • Michel Miesch
    • 2
  • Clément Heinrich
    • 2
  • Franck Pinot
    • 1
  • Raphaël Lugan
    • 1
    Email author
  1. 1.Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de StrasbourgStrasbourg CedexFrance
  2. 2.Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177, Université de Strasbourg, CNRSStrasbourg CedexFrance

Personalised recommendations