, Volume 11, Issue 4, pp 964–979 | Cite as

Postprandial metabolic events in mini-pigs: new insights from a combined approach using plasma metabolomics, tissue gene expression, and enzyme activity

  • Sergio PolakofEmail author
  • Didier Rémond
  • Mathieu Rambeau
  • Estelle Pujos-Guillot
  • Jean-Louis Sébédio
  • Dominique Dardevet
  • Blandine Comte
  • Isabelle Savary-Auzeloux
Original Article


To unravel metabolic adaptations preceding the occurrence of metabolic dysregulations, a nutritional challenge appears as the best tool capable to reveal metabolic disturbances compared to single-point measurements at the static fasting (PA) state. The aim of the present work was to study the metabolic trajectories at the postprandial (PP) state in a relevant human nutrition animal model combining plasma metabolome analysis with classical metabolism exploration tools. In a first trial, three mini pigs were fed a test meal and arterial blood samples withdrawn before and over 4 h following the meal for plasma metabolites analysis (LC–MS and classical biochemistry). In a second trial, three mini-pigs were euthanized after an overnight fasting and three others 1:15 h after the test meal. The metabolism was explored at the molecular (mRNA levels), biochemical (enzyme activities) and signalling (phosphorylation status) levels in the liver and muscle. As expected, and in accordance with alterations in plasma glucose, urea levels, gluconeogenesis/glycolysis/lipid and amino acid (AA) oxidation genes expression and enzymes activities, the metabolomic approach discriminated the PA from the PP state (R2Ycum = 0.991; Q2Ycum = 0.921). More interestingly hierarchical cluster analysis revealed that the PP metabolome included actually four types of kinetic profiles. Further, PLS-DA analysis revealed a two-step pattern: 1–2  and 3–4 h (R2Ycum = 0.837; Q2cum = 0.635). Among the molecules explaining this discrimination, several AAs and phospholipid species were highlighted and their significance in PP metabolism discussed. Our data showed that the combination of these approaches in mini-pigs could be used to investigate PP metabolic adaptations in various physiological and patho-physiological states.


Metabolomics Mini-pig Postprandial metabolism Muscle Liver 



The authors acknowledge D. Durand, C. Prolhac, C. Buisson, J. David, M. Petera and the personnel of the Animal Facility (C. de L’Homme, B. Cohade) for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethical Requirements

All procedures were in accordance with the guidelines formulated by the European Community for the use of experimental animals (L358-86/609/EEC, Council Directive, 1986).

Supplementary material

11306_2014_753_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 36 kb)


  1. Alegre, M., Ciudad, C. J., Fillat, C., & Guinovart, J. J. (1988). Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Analytical Biochemistry, 173, 185–189.PubMedCrossRefGoogle Scholar
  2. Ang, J. E., et al. (2012). Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography–mass spectrometry metabolomic approach. Chronobiology International, 29, 868–881.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Barbe, F., et al. (2013). The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry, 136, 1203–1212.PubMedCrossRefGoogle Scholar
  4. Barber, M. N., et al. (2012). Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE, 7, e41456.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barthel, A., & Schmoll, D. (2003). Novel concepts in insulin regulation of hepatic gluconeogenesis. American Journal of Physiology Endocrinology and Metabolism, 285, E685–E692.PubMedCrossRefGoogle Scholar
  6. Bartoli, E., Fra, G. P., & Carnevale Schianca, G. P. (2011). The oral glucose tolerance test (OGTT) revisited. European Journal of Internal Medicine, 22, 8–12.PubMedCrossRefGoogle Scholar
  7. Benton, H. P., Wong, D. M., Trauger, S. A., & Siuzdak, G. (2008). XCMS2: Processing tandem mass spectrometry data for metabolite identification and structural characterization. Analytical Chemistry, 80, 6382–6389.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., & Beaufrere, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94, 14930–14935.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Caraux, G., & Pinloche, S. (2005). PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21, 1280–1281.PubMedCrossRefGoogle Scholar
  10. Carroll, M. F., & Schade, D. S. (2003). Timing of antioxidant vitamin ingestion alters postprandial proatherogenic serum markers. Circulation, 108, 24–31.PubMedCrossRefGoogle Scholar
  11. Corpeleijn, E., Saris, W. H., & Blaak, E. E. (2009). Metabolic flexibility in the development of insulin resistance and type 2 diabetes: Effects of lifestyle. Obesity Reviews, 10, 178–193.PubMedCrossRefGoogle Scholar
  12. Dardevet, D., Remond, D., Peyron, M. A., Papet, I., Savary-Auzeloux, I., & Mosoni, L. (2012). Muscle wasting and resistance of muscle anabolism: The “anabolic threshold concept” for adapted nutritional strategies during sarcopenia. Scientific World Journal, 2012, 269531.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Davidson, A. L., & Arion, W. J. (1987). Factors underlying significant underestimations of glucokinase activity in crude liver extracts: Physiological implications of higher cellular activity. Archives of Biochemistry and Biophysics, 253, 156–167.PubMedCrossRefGoogle Scholar
  14. Denton, R. M., Edgell, N. J., Bridges, B. J., & Poole, G. P. (1979). Acute regulation of pyruvate kinase activity in rat epididymal adipose tissue by insulin. Biochemical Journal, 180, 523–531.PubMedCentralPubMedGoogle Scholar
  15. Eckel-Mahan, K. L., Patel, V. R., Mohney, R. P., Vignola, K. S., Baldi, P., & Sassone-Corsi, P. (2012). Coordination of the transcriptome and metabolome by the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 109, 5541–5546.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Frayn, K., Arner, P., & Yki-Jarvinen, H. (2006). Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays in Biochemistry, 42, 89–103.PubMedCrossRefGoogle Scholar
  17. Fustin, J. M., Doi, M., Yamada, H., Komatsu, R., Shimba, S., & Okamura, H. (2012). Rhythmic nucleotide synthesis in the liver: Temporal segregation of metabolites. Cell Reports, 1, 341–349.PubMedCrossRefGoogle Scholar
  18. German, J. B., Zivkovic, A. M., Dallas, D. C., & Smilowitz, J. T. (2011). Nutrigenomics and personalized diets: What will they mean for food? Annual review of food science and technology, 2, 97–123.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Horakova, O., et al. (2012). Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice. PLoS ONE, 7, e43764.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Iynedjian, P. B. (2009). Molecular physiology of mammalian glucokinase. Cellular and Molecular Life Sciences, 66, 27–42.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Karlic, H., Lohninger, S., Koeck, T., & Lohninger, A. (2002). Dietary l-carnitine stimulates carnitine acyltransferases in the liver of aged rats. Journal of Histochemistry and Cytochemistry, 50, 205–212.PubMedCrossRefGoogle Scholar
  22. Keppler, D., Decker, K., & Bergmeyer, H. U. (1974). Glycogen determination with amyloglucosidase Methods of Enzymatic Analysis (pp. 1127–1131). New York: Academic Press.Google Scholar
  23. Kersten, S. (2001). Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Reports, 2, 282–286.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Koopman, R., et al. (2009). Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. American Journal of Clinical Nutrition, 90, 106–115.PubMedCrossRefGoogle Scholar
  25. Krug, S., Kastenmuller, G., Stuckler, F., Rist, M. J., Skurk, T., Sailer, M., et al. (2012). The dynamic range of the human metabolome revealed by challenges. FASEB Journal, 26(6), 2607–2619.PubMedCrossRefGoogle Scholar
  26. Lambert, J. E., & Parks, E. J. (2012). Postprandial metabolism of meal triglyceride in humans. Biochimica et Biophysica Acta, 1821, 721–726.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Maillot, F., et al. (2005). Changes in plasma triacylglycerol concentrations after sequential lunch and dinner in healthy subjects. Diabetes & Metabolism, 31, 69–77.CrossRefGoogle Scholar
  28. Mamo, J. C., James, A. P., Soares, M. J., Griffiths, D. G., Purcell, K., & Schwenke, J. L. (2005). A low-protein diet exacerbates postprandial chylomicron concentration in moderately dyslipidaemic subjects in comparison to a lean red meat protein-enriched diet. European Journal of Clinical Nutrition, 59, 1142–1148.PubMedCrossRefGoogle Scholar
  29. Merrifield, C. A., Lewis, M., Claus, S. P., Beckonert, O. P., Dumas, M.-E., Duncker, S., et al. (2011). A metabolic system-wide characterisation of the pig: A model for human physiology. Molecular BioSystems, 7(9), 2577–2588.PubMedCrossRefGoogle Scholar
  30. Miller, E. R., & Ullrey, D. E. (1987). The pig as a model for human nutrition. Annual Review of Nutrition, 7(1), 361–382.PubMedCrossRefGoogle Scholar
  31. Minami, Y., et al. (2009). Measurement of internal body time by blood metabolomics. Proceedings of the National Academy of Sciences of the United States of America, 106, 9890–9895.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Nappo, F., et al. (2002). Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: Role of fat and carbohydrate meals. Journal of the American College of Cardiology, 39, 1145–1150.PubMedCrossRefGoogle Scholar
  33. Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15, 606–614.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Newgard, C. B., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Noah, L., Krempf, M., Lecannu, G., Maugere, P., & Champ, M. (2000). Bioavailability of starch and postprandial changes in splanchnic glucose metabolism in pigs. American Journal of Physiology Endocrinology and Metabolism, 278, E181–E188.PubMedGoogle Scholar
  36. Olsen, A. K., Bladbjerg, E. M., Marckmann, P., Larsen, L. F., & Hansen, A. K. (2002). The Göttingen minipig as a model for postprandial hyperlipidaemia in man: Experimental observations. Laboratory Animals, 36, 438–444.PubMedCrossRefGoogle Scholar
  37. Panserat, S., Rideau, N., & Polakof, S. (2014). Nutritional regulation of glucokinase: A cross-species story. Nutrition Research Reviews, 27(1), 21–47.PubMedCrossRefGoogle Scholar
  38. Pellis, L., et al. (2012). Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics, 8, 347–359.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Pereira, H., Martin, J.-F., Joly, C., Sébédio, J.-L., & Pujos-Guillot, E. (2010). Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics, 6, 207–218.CrossRefGoogle Scholar
  40. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Remond, D., et al. (2007). Postprandial whole-body protein metabolism after a meat meal is influenced by chewing efficiency in elderly subjects. American Journal of Clinical Nutrition, 85, 1286–1292.PubMedGoogle Scholar
  42. Rerat, A., Jung, J., & Kande, J. (1988a). Absorption kinetics of dietary hydrolysis products in conscious pigs given diets with different amounts of fish protein. 2. Individual amino acids. British Journal of Nutrition, 60, 105–120.PubMedCrossRefGoogle Scholar
  43. Rerat, A., Vaissade, P., & Vaugelade, P. (1988b). Absorption kinetics of dietary hydrolysis products in conscious pigs given diets with different amounts of fish protein. 1. Amino-nitrogen and glucose. British Journal of Nutrition, 60, 91–104.PubMedCrossRefGoogle Scholar
  44. Rubenstein, A. H., Seftel, H. C., Miller, K., Bersohn, I., & Wright, A. D. (1969). Metabolic response to oral glucose in healthy South African white, Indian, and African subjects. British journal of medicine, 1, 748–751.CrossRefGoogle Scholar
  45. Saggerson, E., & Greenbaum, A. (1970). The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Effects of altered dietary and hormonal conditions. Biochemical Journal, 119, 221.PubMedCentralPubMedGoogle Scholar
  46. Sampey, B. P., et al. (2012). Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE, 7, e38812.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Secor, S. M. (2009). Specific dynamic action: A review of the postprandial metabolic response. Journal of Comparative Physiology B, 179, 1–56.CrossRefGoogle Scholar
  48. Sestoft, L., Tonnesen, K., Hansen, F. V., & Damgaard, S. E. (1972). Fructose and d-glyceraldehyde metabolism in the isolated perfused pig liver. European Journal of Biochemistry, 30(3), 542–552.PubMedCrossRefGoogle Scholar
  49. Shaham, O., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biololy, 4, 214.Google Scholar
  50. Skurk, T., Rubio-Aliaga, I., Stamfort, A., Hauner, H., & Daniel, H. (2011). New metabolic interdependencies revealed by plasma metabolite profiling after two dietary challenges. Metabolomics, 7, 388–399.CrossRefGoogle Scholar
  51. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.PubMedCrossRefGoogle Scholar
  52. Smyth, G. E., & Colman, R. F. (1992). Inactivation of pig heart NADP-specific isocitrate dehydrogenase by two affinity reagents is due to reaction with a cysteine not essential for function. Archives of Biochemistry and Biophysics, 293(2), 356–361.PubMedCrossRefGoogle Scholar
  53. Son, N., et al. (2012). Liquid chromatography-mass spectrometry-based metabolomic analysis of livers from aged rats. Journal of Proteome Research, 11, 2551–2558.PubMedCrossRefGoogle Scholar
  54. Spégel, P., Danielsson, A. H., Bacos, K., Nagorny, C. F., Moritz, T., Mulder, H., et al. (2010). Metabolomic analysis of a human oral glucose tolerance test reveals fatty acids as reliable indicators of regulated metabolism. Metabolomics, 6(1), 56–66.CrossRefGoogle Scholar
  55. Sumner, L. W., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211–221.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Truswell, A. S. (1994). Food carbohydrates and plasma lipids—an update. American Journal of Clinical Nutrition, 59, 710S–718S.PubMedGoogle Scholar
  57. Wahl, S., Krug, S., Then, C., Kirchhofer, A., Kastenmüller, G., Brand, T., et al. (2014). Comparative analysis of plasma metabolomics response to metabolic challenge tests in healthy subjects and influence of the FTO obesity risk allele. Metabolomics, 10(3), 386–401.CrossRefGoogle Scholar
  58. Wang, T. J., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Westbury, K., & Hahn, P. (1984). Fructose-1,6-biphosphatase activity in the intestinal mucosa of developing rats. American Journal of Physiology, 246, G683–G686.PubMedGoogle Scholar
  60. Wishart, D. S. (2007). Current progress in computational metabolomics. Brief Bioinformatics, 8, 279–293.PubMedCrossRefGoogle Scholar
  61. Xie, B., Waters, M. J., & Schirra, H. J. (2012). Investigating potential mechanisms of obesity by metabolomics. Journal of Biomedicine and Biotechnology, 2012, 805683.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Zhao, X., et al. (2009). Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? American Journal of Physiology, Endocrinology and Metabolism, 296, E384–E393.CrossRefGoogle Scholar
  63. Zhu, C., Liang, Q. L., Hu, P., Wang, Y. M., & Luo, G. A. (2011). Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta, 85, 1711–1720.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sergio Polakof
    • 1
    • 2
    Email author
  • Didier Rémond
    • 1
    • 2
  • Mathieu Rambeau
    • 1
    • 2
  • Estelle Pujos-Guillot
    • 1
    • 2
    • 3
  • Jean-Louis Sébédio
    • 1
    • 2
  • Dominique Dardevet
    • 1
    • 2
  • Blandine Comte
    • 1
    • 2
  • Isabelle Savary-Auzeloux
    • 1
    • 2
  1. 1.Unité de Nutrition HumaineClermont Université, Université d’AuvergneClermont-FerrandFrance
  2. 2.INRA, UMR 1019, UNH, CRNH AuvergneClermont-FerrandFrance
  3. 3.INRA, UMR 1019, Plateforme d’Exploration du Métabolisme, UNHClermont-FerrandFrance

Personalised recommendations