, Volume 11, Issue 4, pp 980–990 | Cite as

Metabolomics as a tool for diagnosis and monitoring in coeliac disease

  • Danielle RyanEmail author
  • Evan D. Newnham
  • Paul D. Prenzler
  • Peter R. Gibson
Review Article


Coeliac disease (CD) is a well defined condition contributed to by both genetic and environmental factors. The clinical management of CD is becoming increasingly complex as the disparity between symptoms, biological markers and mucosal pathology becomes more apparent. The only available treatment for CD is a life-long strict gluten-free diet (GFD), but up to 86 % of adult patients fail to achieve complete mucosal recovery even after 2 years of a GFD. The only accurate means of monitoring recovery on a GFD is via histology, which is cumbersome and resource intensive. Therefore, there is a need for novel non-invasive techniques for diagnosis and monitoring that are more accurate than serum antibodies in addition to an improved understanding of the disease mechanisms and obstacles to recovery. Metabolomics may address these needs. Metabolomics can be used to evaluate biomarkers associated with human disease from a variety of biological matrices including blood, urine and tissue samples. Through the comprehensive analysis of metabolites, metabolomics offers great promise for the early detection of CD and convenient monitoring of response to a GFD and perhaps an accurate means of assessing compliance to a GFD. As more evidence of the importance of gut microflora in human health accumulates, metabolomics may also be applied to investigate microbiome-metabolome interactions in CD for the most comprehensive understanding of this disease to date.


Coeliac disease Metabolomics Diagnosis Monitoring 


Conflict of interest

The authors declare no conflict of interest.

Compliance with Ethical Requirements

This article does not contain any studies with human or animal subjects.


  1. Anderson, R. P., Henry, M. J., Taylor, R., Duncan, E. L., Danoy, P., Costa, M. J., et al. (2013). A novel serogenetic approach determines the community prevalence of celiac disease and informs improved diagnostic pathways. BMC Medicine, 11, 188–200. doi: 10.1186/1741-7015-11-188.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Assfalg, M., Bertini, I., Colangiuli, D., Luchinat, C., Schafer, H., Schutz, B., et al. (2008). Evidence of different metabolic phenotypes in humans. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1420–1424. doi: 10.1073/pnas.0705685105.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Beckonert, O., Coen, M., Keun, H. C., Wang, Y. L., Ebbels, T. M. D., Holmes, E., et al. (2010). High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nature Protocols, 5(6), 1019–1032. doi: 10.1038/nprot.2010.45.PubMedCrossRefGoogle Scholar
  4. Bernini, P., Bertini, I., Calabro, A., la Marca, G., Lami, G., Luchinat, C., et al. (2011a). Are patients with potential celiac disease really potential? The answer of metabonomics. Journal of Proteome Research, 10(2), 714–721. doi: 10.1021/pr100896s.PubMedCrossRefGoogle Scholar
  5. Bernini, P., Bertini, I., Luchinat, C., Nepi, S., Saccenti, E., Schaefer, H., et al. (2009). Individual human phenotypes in metabolic space and time. Journal of Proteome Research, 8(9), 4264–4271. doi: 10.1021/pr900344m.PubMedCrossRefGoogle Scholar
  6. Bernini, P., Bertini, I., Luchinat, C., Nincheri, P., Staderini, S., & Turano, P. (2011b). Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. Journal of Biomolecular NMR, 49(3–4), 231–243. doi: 10.1007/s10858-011-9489-1.PubMedCrossRefGoogle Scholar
  7. Bertini, I., Cacciatore, S., Jensen, B. V., Schou, J. V., Johansen, J. S., Kruhøffer, M., et al. (2012). Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Research, 72(1), 356–364. doi: 10.1158/0008-5472.CAN-11-1543.
  8. Bertini, I., Calalbro, A., De Carli, V., Luchinat, C., Nepi, S., Porfirio, B., et al. (2009). The metabonomic signature of celiac disease. Journal of Proteome Research, 8(1), 170–177. doi: 10.1021/pr800548z.PubMedCrossRefGoogle Scholar
  9. Bjerrum, J. T., Nielsen, O. H., Hao, F., Tang, H., Nicholson, J. K., Wang, Y., et al. (2010). Metabonomics in ulcerative colitis: Diagnostics, biomarker identification, and insight into the pathophysiology. Journal of Proteomics, 9(2), 954–962. doi: 10.1021/pr9008223.
  10. Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., et al. (2013). The human urine metabolome. PLoS ONE, 8(9), e73076. doi: 10.1371/journal.pone.0073076.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bustamante, S., Pickford, R., Shin, S., Luber, R., Campbell, B., Redmond, D., et al. (2010). Metabolomics in inflammatory bowel disease. Journal of Gastroenterology and Hepatology, 25(Suppl. 3), A83–A83.Google Scholar
  12. Calavia, R., Annanouch, F. E., Correig, X., & Yanes, O. (2012). Nanostructure initiator mass spectrometry for tissue imaging in metabolomics: Future prospects and perspectives. Journal of Proteomics, 75(16), 5061–5068. doi: 10.1016/j.jprot.2012.05.002.PubMedCrossRefGoogle Scholar
  13. Catassi, C., Kryszak, D., Bhatti, B., Sturgeon, C., Helzlsouer, K., Clipp, S. L., et al. (2010). Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Annals of Medicine, 42(7), 530–538. doi: 10.3109/07853890.2010.514285.PubMedCrossRefGoogle Scholar
  14. Collino, S., Martin, F. P. J., & Rezzi, S. (2013). Clinical metabolomics paves the way towards future healthcare strategies. British Journal of Clinical Pharmacology, 75(3), 619–629. doi: 10.1111/j.1365-2125.2012.04216.x.PubMedCentralPubMedGoogle Scholar
  15. de Vos, W. M., & de Vos, E. A. J. (2012). Role of the intestinal microbiome in health and disease: From correlation to causation. Nutrition Reviews, 70, S45–S56. doi: 10.1111/j.1753-4887.2012.00505.x.PubMedCrossRefGoogle Scholar
  16. Denoroy, L., Zimmer, L., Renaud, B., & Parrot, S. (2013). Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: A review. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 927, 37–53. doi: 10.1016/j.jchromb.2012.12.005.CrossRefGoogle Scholar
  17. Di Cagno, R., De Angelis, M., De Pasquale, I., Ndagijimana, M., Vernocchi, P., Ricciuti, P., et al. (2011). Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiology, 11(1), 219. doi: 10.1186/1471-2180-11-219.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Di Cagno, R., Rizzello, C. G., Gagliardi, F., Ricciuti, P., Ndagijimana, M., Francavilla, R., et al. (2009). Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Applied and Environmental Microbiology, 75(12), 3963–3971. doi: 10.1128/aem.02793-08.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Dube, C., Rostom, A., Sy, R., Cranney, A., Saloojee, N., Garritty, C., et al. (2005). The prevalence of celiac disease in average-risk and at-risk Western European populations: A systematic review. Gastroenterology, 128(4), S57–S67. doi: 10.1053/j.gastro.2005.02.014.PubMedCrossRefGoogle Scholar
  20. Emwas, A. H. M., Salek, R. M., Griffin, J. L., & Merzaban, J. (2013). NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations. Metabolomics, 9(5), 1048–1072. doi: 10.1007/s11306-013-0524-y.CrossRefGoogle Scholar
  21. Gibney, M. J., Walsh, M., Brennan, L., Roche, H. M., German, B., & van Ommen, B. (2005). Metabolomics in human nutrition: Opportunities and challenges. American Journal of Clinical Nutrition, 82(3), 497–503.PubMedGoogle Scholar
  22. Greving, M. P., Patti, G. J., & Siuzdak, G. (2011). Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Analytical Chemistry, 83(1), 2–7. doi: 10.1021/ac101565f.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hedrick, V. E., Dietrich, A. M., Estabrooks, P. A., Savla, J., Serrano, E., & Davy, B. M. (2012). Dietary biomarkers: Advances, limitations and future directions. Nutrition Journal, 11(1), 109. doi: 10.1186/1475-2891-11-109.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Herman, M. L., Rubio-Tapia, A., Lahr, B. D., Larson, J. J., Van Dyke, C. T., & Murray, J. A. (2012). Patients with celiac disease are not followed up adequately. Clinical Gastroenterology and Hepatology, 10(8), 893. doi: 10.1016/j.cgh.2012.05.007.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hill, I. D. (2005). What are the sensitivity and specificity of serologic celiac disease? Do sensitivity and specificity vary in populations? Gastroenterology, 128(4), S25–S32. doi: 10.1053/j.gastro.2005.02.012.PubMedCrossRefGoogle Scholar
  26. Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H., & Nicholson, J. K. (2011). Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends in Microbiology, 19(7), 349–359. doi: 10.1016/j.tim.2011.05.006.PubMedCrossRefGoogle Scholar
  27. Holmes, E., Wilson, I. D., & Nicholson, J. K. (2008). Metabolic phenotyping in health and disease. Cell, 134(5), 714–717. doi: 10.1016/j.cell.2008.08.026.PubMedCrossRefGoogle Scholar
  28. Jiménez, B., Mirnezami, R., Kinross, J., Cloarec, O., Keun, H. C., Holmes, E., et al. (2013). 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging and prognostication. Journal of Proteome Research, 12(2), 959–968. doi: 10.1021/pr3010106.PubMedCrossRefGoogle Scholar
  29. Johnson, C. H., & Gonzalez, F. J. (2012). Challenges and opportunities of metabolomics. Journal of Cellular Physiology, 227(8), 2975–2981. doi: 10.1002/jcp.24002.PubMedCrossRefGoogle Scholar
  30. Koal, T., & Deigner, H. P. (2010). Challenges in mass spectrometry based targeted metabolomics. Current Molecular Medicine, 10(2), 216–226.PubMedCrossRefGoogle Scholar
  31. König, S. (2011). Urine molecular profiling distinguishes health and disease: New methods in diagnostics? Focus on UPLC-MS. Expert Review of Molecular Diagnostics, 11(4), 383–391. doi: 10.1586/erm.11.13.PubMedCrossRefGoogle Scholar
  32. Koulman, A., Lane, G. A., Harrison, S. J., & Volmer, D. A. (2009). From differentiating metabolites to biomarkers. Analytical and Bioanalytical Chemistry, 394(3), 663–670. doi: 10.1007/s00216-009-2690-3.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Laurin, P., Falth-Magnusson, K., & Sundqvist, T. (2003). Increase in nitric oxide urinary products during gluten challenge in children with coeliac disease. Scandinavian Journal of Gastroenterology, 38(1), 55–60.PubMedCrossRefGoogle Scholar
  34. Lindon, J. C., Beckonert, O. P., Holmes, E., & Nicholson, J. K. (2009). High-resolution magic angle spinning NMR spectroscopy: Application to biomedical studies. Progress in Nuclear Magnetic Resonance Spectroscopy, 55(2), 79–100. doi: 10.1016/j.pnmrs.2008.11.004.CrossRefGoogle Scholar
  35. Losowsky, M. S. (2008). A history of coeliac disease. Digestive Diseases, 26(2), 112–120. doi: 10.1159/000116768.PubMedCrossRefGoogle Scholar
  36. Ludvigsson, J. F., Leffler, D. A., Bai, J. C., Biagi, F., Fasano, A., Green, P. H. R., et al. (2013). The Oslo definitions for coeliac disease and related terms. Gut, 62(1), 43–52. doi: 10.1136/gutjnl-2011-301346.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Martin, F.-P. J., Collino, S., & Rezzi, S. (2011). 1H NMR-based metabonomic applications to decipher gut microbial metabolic influence on mammalian health. Magnetic Resonance in Chemistry, 49, S47–S54. doi: 10.1002/mrc.2810.PubMedCrossRefGoogle Scholar
  38. Martin, F. P. J., Dumas, M. E., Wang, Y. L., Legido-Quigley, C., Yap, I. K. S., Tang, H. R., et al. (2007). A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Molecular Systems Biology, 3, 112. doi: 10.1038/msb4100153.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Martin, F. P. J., Montoliu, I., Kochhar, S., & Rezzi, S. (2010). Chemometric strategy for modeling metabolic biological space along the gastrointestinal tract and assessing microbial influences. Analytical Chemistry, 82(23), 9803–9811. doi: 10.1021/ac102015n.PubMedCrossRefGoogle Scholar
  40. Mooney, P. D., Hadjivassiliou, M., & Sanders, D. S. (2014). Coeliac disease. BMJ, 348, 1–8. doi: 10.1136/bmj.g1561.Google Scholar
  41. Nicholson, J. K., Holmes, E., Kinross, J. M., Darzi, A. W., Takats, Z., & Lindon, J. C. (2012). Metabolic phenotyping in clinical and surgical environments. Nature, 491(7424), 384–392. doi: 10.1038/nature11708.PubMedCrossRefGoogle Scholar
  42. Primrose, S., Draper, J., Elsom, R., Kirkpatrick, V., Mathers, J. C., Seal, C., et al. (2011). Metabolomics and human nutrition. The British Journal of Nutrition, 105(8), 1277–1283. doi: 10.1017/s0007114510004812.PubMedCrossRefGoogle Scholar
  43. Reimund, J. M., Duclos, B., Koehl, C., Lehr, L., Ezenfis, J., & Baumann, R. (1999). Nitric oxide end products in patients hospitalized for diarrhoea. European Journal of Gastroenterology and Hepatology, 11(9), 1013–1018. doi: 10.1097/00042737-199909000-00011.PubMedCrossRefGoogle Scholar
  44. Ryan, D., & Robards, K. (2006). Metabolomics: The greatest omics of them all? Analytical Chemistry, 78(23), 7954–7958. doi: 10.1021/ac0614341.PubMedCrossRefGoogle Scholar
  45. Ryan, D., Robards, K., Prenzler, P. D., & Kendall, M. (2011). Recent and potential developments in the analysis of urine: A review. Analytica Chimica Acta, 684(1–2), 17–29. doi: 10.1016/j.aca.2010.10.035.CrossRefGoogle Scholar
  46. Sanchez, E., De Palma, G., Capilla, A., Nova, E., Pozo, T., Castillejo, G., et al. (2011). Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by bacteroides species. Applied and Environmental Microbiology, 77(15), 5316–5323. doi: 10.1128/aem.00365-11.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458. doi: 10.1007/s11306-009-0168-0.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Scalbert, A., Brennan, L., Manach, C., Andres-Lacueva, C., Dragsted, L. O., Draper, J., et al. (2014). The food metabolome: A window over dietary exposure. American Journal of Clinical Nutrition, 99(6), 1286–1308. doi: 10.3945/ajcn.113.076133.PubMedCrossRefGoogle Scholar
  49. Schippa, S., Iebba, V., Barbato, M., Di Nardo, G., Totino, V., Checchi, M. P., et al. (2010). A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiology, 10, 175. doi: 10.1186/1471-2180-10-175.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Sellitto, M., Bai, G. Y., Serena, G., Fricke, W. F., Sturgeon, C., Gajer, P., et al. (2012). Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS One, 7(3), e33387. doi: 10.1371/journal.pone.0033387.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sharkey, L. M., Corbett, G., Currie, E., Lee, J., Sweeney, N., & Woodward, J. M. (2013). Optimising delivery of care in coeliac disease—comparison of the benefits of repeat biopsy and serological follow-up. Alimentary Pharmacology & Therapeutics, 38(10), 1278–1291. doi: 10.1111/apt.12510.CrossRefGoogle Scholar
  52. van Ommen, B., Bouwman, J., Dragsted, L. O., Drevon, C. A., Elliott, R., de Groot, P., et al. (2010). Challenges of molecular nutrition research 6: The nutritional phenotype database to store, share and evaluate nutritional systems biology studies. Genes and Nutrition, 5(3), 189–203. doi: 10.1007/s12263-010-0167-9.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Wang, Y., Holmes, E., Comelli, E. M., Fotopoulos, G., Dorta, G., Tang, H., et al. (2007). Topographical variation in metabolic signatures of human gastrointestinal biopsies revealed by high-resolution magic-angle spinning H-1 NMR spectroscopy. Journal of Proteome Research, 6(10), 3944–3951. doi: 10.1021/pr0702565.PubMedCrossRefGoogle Scholar
  54. Wang, H. L., Tso, V. K., Slupsky, C. M., & Fedorak, R. N. (2010). Metabolomics and detection of colorectal cancer in humans: A systematic review. Future Oncology, 6(9), 1395–1406. doi: 10.2217/fon.10.107.PubMedCrossRefGoogle Scholar
  55. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Research, 41(D1), D801–D807. doi: 10.1093/nar/gks1065.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Wishart, D. S., Querengesser, L. M. M., Lefebvre, B. A., Epstein, N. A., Greiner, R., & Newton, J. B. (2001). Magnetic resonance diagnostics: A new technology for high-throughput clinical diagnostics. Clinical Chemistry, 47(10), 1918–1921.Google Scholar
  57. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526. doi: 10.1093/nar/gkl923.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Zhang, A. H., Sun, H., Wang, P., Han, Y., & Wang, X. J. (2012). Recent and potential developments of biofluid analyses in metabolomics. Journal of Proteomics, 75(4), 1079–1088. doi: 10.1016/j.jprot.2011.10.027.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Danielle Ryan
    • 1
    Email author
  • Evan D. Newnham
    • 2
  • Paul D. Prenzler
    • 1
  • Peter R. Gibson
    • 3
  1. 1.Graham Centre for Agricultural Innovation, School of Agricultural and Wine SciencesCharles Sturt UniversityWagga WaggaAustralia
  2. 2.Department of Gastroenterology, Eastern Health Clinical SchoolMonash UniversityBox HillAustralia
  3. 3.Department of Gastroenterology, Alfred Hospital, Central Clinical SchoolMonash UniversityMelbourneAustralia

Personalised recommendations