Skip to main content
Log in

Metabolite profiles of essential oils in citrus peels and their taxonomic implications

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

China is an important center of origin for the genus Citrus L. of the family Rutaceae and is rich in wild Citrus species. The taxonomy of Citrus has been a subject of controversy for more than a half century. We propose that the metabolite profiles of Chinese native Citrus species can be used for classification and understanding of the taxonomic relationships within the Citrus germplasm. In this study, triplicate gas chromatography–mass spectrometry (GC–MS) metabolite profiles of 20 Citrus species/varieties were acquired, including 10 native varieties originating in China. R-(+)-limonene, α-pinene, sabinene and α-terpinene were found to be major characteristic components of the essential oils analyzed in this study, and these compounds contributed greatly to the metabolic classification. The three basic species of the subgenus Eucitrus (Swingle’s system), i.e., C. reticulata Blanco, C. medica L. and C. grandis Osb., were clearly differentiated based upon their metabolite profiles using hierarchical cluster analysis (HCA) and partial least square-discriminant analysis (PLS-DA). All the presumed hybrid genotypes, including sweet orange (C. sinensis Osb.), sour orange (C. aurantium L.), lemon (C. limon Burm.f.), rough lemon (C. jambhiri Lush.), rangpur lime (C. limonia Osb.) and grapefruit (C. paradisi Macf.), were grouped closely together with one of their suggested parent species in the HCA-dendrogram and the PLS-DA score plot. These results clearly demonstrated that the metabolite profiles of Citrus species could be utilized for the taxonomic classification of the genus and are complementary to the existing taxonomic evidence, especially for the identification and differentiation of hybrid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

cpDNA:

Chloroplast DNA

GC–MS:

Gas chromatography–mass spectrometry

HCA:

Hierarchical cluster analysis

LV:

Latent variable

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

PCA:

Principal component analysis

PLS:

Partial least square

PLS-DA:

Partial least square-discriminant analysis

RI:

Retention index

TIC:

Total ion chromatogram

References

  • Aliferis, K. A., Cubeta, M. A., & Jabaji, S. (2013). Chemotaxonomy of fungi in the Rhizoctonia solani species complex performing GC/MS metabolite profiling. Metabolomics, 9, 159–169.

    Article  CAS  Google Scholar 

  • Barkley, N. A., Roose, M. L., Krueger, R. R., & Federici, C. T. (2006). Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 112, 1519–1531.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, H., & Rhodes, A. (1976). A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Systematic Botany, 1, 105–136.

    Article  Google Scholar 

  • Bedair, M., & Sumner, L. W. (2008). Current and emerging mass-spectrometry technologies for metabolomics. TrAC Trends in Analytical Chemistry, 27, 238–250.

    Article  CAS  Google Scholar 

  • Bijlsma, S., Bobeldijk, I., Verheij, E. R., et al. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry, 78, 567–574.

    Article  CAS  PubMed  Google Scholar 

  • Blanco Tirado, C., Stashenko, E. E., Combariza, M. Y., & Martinez, J. R. (1995). Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 697, 501–513.

    Article  CAS  Google Scholar 

  • Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X., & Sumner, L. W. (2006). MET-IDEA: Data extraction tool for mass spectrometry-based metabolomics. Analytical Chemistry, 78, 4334–4341.

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos, J. M., García-Torres, R., Etxeberria, E., & Reyes-De-Corcuera, J. I. (2011). GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus huanglongbing and zinc deficiency in leaves of ‘Valencia’ sweet orange from commercial groves. Phytochemical Analysis, 22, 236–246.

    Article  CAS  PubMed  Google Scholar 

  • Dharmawan, J., Kasapis, S., Sriramula, P., Lear, M. J., & Curran, P. (2008). Evaluation of aroma-active compounds in Pontianak orange peel oil (Citrus nobilis Lour. Var. microcarpa Hassk.) by gas chromatography–olfactometry, aroma reconstitution, and omission test. Journal of Agricultural and Food Chemistry, 57, 239–244.

    Article  Google Scholar 

  • Ding, X. B., Fan, S. J., Lu, Y., et al. (2012). Citrus ichangensis peel extract exhibits anti-metabolic disorder effects by the inhibition of PPAR and LXR signaling in high-fat diet-induced C57BL/6 mouse. Evidence-Based Complementary and Alternative Medicine, 2012, 1–10.

    Article  Google Scholar 

  • Emwas, A. M., Salek, R. M., Griffin, J. L., & Merzaban, J. (2013). NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics, 9, 1048–1072.

    Article  CAS  Google Scholar 

  • Farag, M. A., Mahrous, E. A., Lübken, T., Porzel, A., & Wessjohann, L. (2013). Classification of commercial cultivars of Humulus lupulus L. (hop) by chemometric pixel analysis of two dimensional nuclear magnetic resonance spectra. Metabolomics, 10, 1–12.

    Google Scholar 

  • Farag, M. A., Porzel, A., & Wessjohann, L. A. (2012). Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry, 76, 60–72.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics–the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Frydman, A., Liberman, R., Huhman, D. V., et al. (2013). The molecular and enzymatic basis of bitter/non-bitter flavor of citrus fruit: evolution of branch-forming rhamnosyltransferases under domestication. The Plant Journal, 73, 166–178.

    Article  CAS  PubMed  Google Scholar 

  • Gulsen, O., & Roose, M. (2001). Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. Journal of the American Society for Horticultural Science, 126, 309–317.

    CAS  Google Scholar 

  • Handa, T., Ishizawa, Y., & Oogaki, C. (1986). Phylogenetic study of fraction I protein in the genus Citrus and its close related genera. Idengaku Zasshi, 61, 15–24.

    Google Scholar 

  • Herrero, R., Asíns, M. J., Carbonell, E. A., & Navarro, L. (1996). Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecies and intragenus genetic variability. Theoretical and Applied Genetics, 92, 599–609.

    Article  CAS  PubMed  Google Scholar 

  • Hosni, K., Zahed, N., Chrif, R. F., et al. (2010). Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chemistry, 123, 1098–1104.

    Article  CAS  Google Scholar 

  • Jing, L., Lei, Z. T., Li, L. G., et al. (2014). Antifungal activity of citrus essential oils. Journal of Agricultural and Food Chemistry, 62, 3011–3033.

    Article  CAS  Google Scholar 

  • Jing, L., Zhang, Y., Fan, S. J., et al. (2013). Preventive and ameliorating effects of citrus d-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity. European Journal of Pharmacology, 715, 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Lei, Z. T., Huhman, D. V., & Sumner, L. W. (2011). Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry, 286, 25435–25442.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lei, Z. T., Li, H. Q., Chang, J. L., Zhao, P. X., & Sumner, L. W. (2012). MET-IDEA version 2.06; improved efficiency and additional functions for mass spectrometry-based metabolomics data processing. Metabolomics, 8, 105–110.

    Article  CAS  Google Scholar 

  • Li, X. M., Xie, R. J., Lu, Z. H., & Zhou, Z. Q. (2010). The origin of cultivated citrus as inferred from internal transcribed spacer and chloroplast DNA sequence and amplified fragment length polymorphism fingerprints. Journal of the American Society for Horticultural Science, 135, 341–350.

    Google Scholar 

  • Liu, C. H., Jiang, D., Cheng, Y. J., et al. (2013). Chemotaxonomic study of Citrus, Poncirus and Fortunella genotypes based on peel oil volatile compounds-deciphering the genetic origin of mangshanyegan (Citrus nobilis Lauriro). PLoS One, 8, e58411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lota, M. L., de Rocca Serra, D., Tomi, F., & Casanova, J. (2000). Chemical variability of peel and leaf essential oils of mandarins from Citrus reticulata Blanco. Biochemical Systematics and Ecology, 28, 61–78.

    Article  CAS  Google Scholar 

  • Lota, M. L., de Rocca Serra, D., Tomi, F., & Casanova, J. (2001). Chemical variability of peel and leaf essential oils of 15 species of mandarins. Biochemical Systematics and Ecology, 29, 77–104.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z. H., Zhou, Z. Q., & Xie, R. J. (2011). Molecular phylogeny of the “true citrus fruit trees” group (Aurantioideae, Rutaceae) as inferred from chloroplast DNA sequence. Agricultural Sciences in China, 10, 49–57.

    Article  CAS  Google Scholar 

  • Malik, M., Scora, R., & Soost, R. (1974). Studies on the origin of the lemon. Hilgardia, 42, 361–382.

    Article  CAS  Google Scholar 

  • Mehl, F., Marti, G., Boccard, J., et al. (2014). Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: a metabolomic approach. Food Chemistry, 143, 325–335.

    Article  CAS  PubMed  Google Scholar 

  • Menichini, F., Loizzo, M. R., Bonesi, M., et al. (2011). Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from Citrus medica L. cv Diamante flowers, leaves and fruits at two maturity stages. Food and Chemical Toxicology, 49, 1549–1555.

    Article  CAS  PubMed  Google Scholar 

  • Minh Tu, N. T., Thanh, L., Une, A., Ukeda, H., & Sawamura, M. (2002). Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils. Flavour and Fragrance Journal, 17, 169–174.

    Article  CAS  Google Scholar 

  • Moore, G. A. (2001). Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends in Genetics, 17, 536–540.

    Article  CAS  PubMed  Google Scholar 

  • Nicolosi, E., Deng, Z. N., Gentile, A., et al. (2000). Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theoretical and Applied Genetics, 100, 1155–1166.

    Article  CAS  Google Scholar 

  • Njoroge, S. M., Koaze, H., Karanja, P. N., & Sawamura, M. (2005). Volatile constituents of redblush grapefruit (Citrus paradisi) and pummelo (Citrus grandis) peel essential oils from Kenya. Journal of Agricultural and Food Chemistry, 53, 9790–9794.

    Article  CAS  PubMed  Google Scholar 

  • Njoroge, S., Mungai, H., Koaze, H., Phi, N., & Sawamura, M. (2006). Volatile constituents of mandarin (Citrus reticulata Blanco) peel oil from Burundi. Journal of Essential Oil Research, 18, 659–662.

    Article  CAS  Google Scholar 

  • Ortiz, J. M., Kumamoto, J., & Scora, R. W. (1978). Possible relationships among sour oranges by analysis of their essential oils. International Flavours and Food Additives, 9, 224–226.

    CAS  Google Scholar 

  • Pan, Z. Y., Li, Y., Deng, X. X., & Xiao, S. Y. (2013). Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry. Metabolomics, 10, 1–16.

    Google Scholar 

  • Pang, X. M., Hu, C. G., & Deng, X. X. (2003). Phylogenetic relationships among Citrus and its relatives as revealed by SSR markers. Acta Genetica Sinica, 30, 81–87.

    CAS  PubMed  Google Scholar 

  • Park, H. J., Jung, U. J., Cho, S. J., et al. (2013). Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose-and lipid-regulating enzymes in db/db mice. The Journal of Nutritional Biochemistry, 24, 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Schauer, N., & Fernie, A. R. (2006). Plant metabolomics: towards biological function and mechanism. Trends in Plant Science, 11, 508–516.

    Article  CAS  PubMed  Google Scholar 

  • Scora, R. W. (1975). On the history and origin of Citrus. Bulletin of the Torrey Botanical Club, 102, 369–375.

    Article  Google Scholar 

  • Strehmel, N., Kopka, J., Scheel, D., & Böttcher, C. (2013). Annotating unknown components from GC/EI-MS-based metabolite profiling experiments using GC/APCI (+)-QTOFMS. Metabolomics, 10, 1–13.

    Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry, 62, 817–836.

    Article  CAS  PubMed  Google Scholar 

  • Sun, C. D., Chen, K. S., Chen, Y., & Chen, Q. J. (2005). Contents and antioxidant capacity of limonin and nomilin in different tissues of citrus fruit of four cultivars during fruit growth and maturation. Food Chemistry, 93, 599–605.

    Article  CAS  Google Scholar 

  • Talon, M., & Gmitter, F. G. (2008). Citrus genomics. International Journal of Plant Genomics, 2008, 1–17.

    Article  Google Scholar 

  • Torres, A. M., Soost, R. K., & Diedenhofen, U. (1978). Leaf isozymes as genetic markers in Citrus. American Journal of Botany, 65, 869–881.

    Article  Google Scholar 

  • Tripoli, E., Guardia, M. L., Giammanco, S., Majo, D. D., & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry, 104, 466–479.

    Article  CAS  Google Scholar 

  • Venturini, N., Curk, F., Desjobert, J. M., et al. (2010). Chemotaxonomic investigations of peel and petitgrain essential oils from 17 citron cultivars. Chemistry & Biodiversity, 7, 736–751.

    Article  CAS  Google Scholar 

  • Webber, H. J. (1943). Cultivated varieties of citrus. The citrus industry, 1, 475–668.

    Google Scholar 

  • Wishart, D. S. (2008). Quantitative metabolomics using NMR. TrAC Trends in Analytical Chemistry, 27, 228–237.

    Article  CAS  Google Scholar 

  • Yun, Z., Gao, H. J., Liu, P., et al. (2013). Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biology, 13, 44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, Z. Q. (1992). A study on the phylogenetic relationships of loose skinned oranges in China. Journal of Southwest Agricultural University, 14, 451–453.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31171930), the Fundamental Research Funds for the Central Universities (XDJK2014A014), the Graduate Student Innovation Fund of Southwest University to Li Jing (kb2011005), the China Scholarship Council (CSC), Program for Chongqing Innovation Team of University (KJTD201333), and the “111” Project (B12006). LJ and LWS were supported by the Samuel Roberts Noble Foundation. LWS was supported in part by National Science Foundation awards (No. 1139489, 1024974 and 1124719).

Conflict of interest

Li Jing, Zhentian Lei, Guiwei Zhang, Alan Cesar Pilon, David V Huhman, Rangjin Xie, Wanpeng Xi, Zhiqin Zhou, and Lloyd W. Sumner declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqin Zhou or Lloyd W. Sumner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 9292 kb)

Supplementary material 2 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Lei, Z., Zhang, G. et al. Metabolite profiles of essential oils in citrus peels and their taxonomic implications. Metabolomics 11, 952–963 (2015). https://doi.org/10.1007/s11306-014-0751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0751-x

Keywords

Navigation