Advertisement

Metabolomics

, Volume 11, Issue 4, pp 952–963 | Cite as

Metabolite profiles of essential oils in citrus peels and their taxonomic implications

  • Li Jing
  • Zhentian Lei
  • Guiwei Zhang
  • Alan Cesar Pilon
  • David V. Huhman
  • Rangjin Xie
  • Wanpeng Xi
  • Zhiqin ZhouEmail author
  • Lloyd W. SumnerEmail author
Original Article

Abstract

China is an important center of origin for the genus Citrus L. of the family Rutaceae and is rich in wild Citrus species. The taxonomy of Citrus has been a subject of controversy for more than a half century. We propose that the metabolite profiles of Chinese native Citrus species can be used for classification and understanding of the taxonomic relationships within the Citrus germplasm. In this study, triplicate gas chromatography–mass spectrometry (GC–MS) metabolite profiles of 20 Citrus species/varieties were acquired, including 10 native varieties originating in China. R-(+)-limonene, α-pinene, sabinene and α-terpinene were found to be major characteristic components of the essential oils analyzed in this study, and these compounds contributed greatly to the metabolic classification. The three basic species of the subgenus Eucitrus (Swingle’s system), i.e., C. reticulata Blanco, C. medica L. and C. grandis Osb., were clearly differentiated based upon their metabolite profiles using hierarchical cluster analysis (HCA) and partial least square-discriminant analysis (PLS-DA). All the presumed hybrid genotypes, including sweet orange (C. sinensis Osb.), sour orange (C. aurantium L.), lemon (C. limon Burm.f.), rough lemon (C. jambhiri Lush.), rangpur lime (C. limonia Osb.) and grapefruit (C. paradisi Macf.), were grouped closely together with one of their suggested parent species in the HCA-dendrogram and the PLS-DA score plot. These results clearly demonstrated that the metabolite profiles of Citrus species could be utilized for the taxonomic classification of the genus and are complementary to the existing taxonomic evidence, especially for the identification and differentiation of hybrid species.

Keywords

Citrus L. Chinese native species Essential oils Metabolite profiling GC–MS Taxonomy 

Abbreviations

cpDNA

Chloroplast DNA

GC–MS

Gas chromatography–mass spectrometry

HCA

Hierarchical cluster analysis

LV

Latent variable

MS

Mass spectrometry

NMR

Nuclear magnetic resonance

PCA

Principal component analysis

PLS

Partial least square

PLS-DA

Partial least square-discriminant analysis

RI

Retention index

TIC

Total ion chromatogram

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31171930), the Fundamental Research Funds for the Central Universities (XDJK2014A014), the Graduate Student Innovation Fund of Southwest University to Li Jing (kb2011005), the China Scholarship Council (CSC), Program for Chongqing Innovation Team of University (KJTD201333), and the “111” Project (B12006). LJ and LWS were supported by the Samuel Roberts Noble Foundation. LWS was supported in part by National Science Foundation awards (No. 1139489, 1024974 and 1124719).

Conflict of interest

Li Jing, Zhentian Lei, Guiwei Zhang, Alan Cesar Pilon, David V Huhman, Rangjin Xie, Wanpeng Xi, Zhiqin Zhou, and Lloyd W. Sumner declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals.

Supplementary material

11306_2014_751_MOESM1_ESM.tif (9.1 mb)
Supplementary material 1 (TIFF 9292 kb)
11306_2014_751_MOESM2_ESM.docx (47 kb)
Supplementary material 2 (DOCX 46 kb)

References

  1. Aliferis, K. A., Cubeta, M. A., & Jabaji, S. (2013). Chemotaxonomy of fungi in the Rhizoctonia solani species complex performing GC/MS metabolite profiling. Metabolomics, 9, 159–169.CrossRefGoogle Scholar
  2. Barkley, N. A., Roose, M. L., Krueger, R. R., & Federici, C. T. (2006). Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 112, 1519–1531.PubMedCrossRefGoogle Scholar
  3. Barrett, H., & Rhodes, A. (1976). A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Systematic Botany, 1, 105–136.CrossRefGoogle Scholar
  4. Bedair, M., & Sumner, L. W. (2008). Current and emerging mass-spectrometry technologies for metabolomics. TrAC Trends in Analytical Chemistry, 27, 238–250.CrossRefGoogle Scholar
  5. Bijlsma, S., Bobeldijk, I., Verheij, E. R., et al. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry, 78, 567–574.PubMedCrossRefGoogle Scholar
  6. Blanco Tirado, C., Stashenko, E. E., Combariza, M. Y., & Martinez, J. R. (1995). Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 697, 501–513.CrossRefGoogle Scholar
  7. Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X., & Sumner, L. W. (2006). MET-IDEA: Data extraction tool for mass spectrometry-based metabolomics. Analytical Chemistry, 78, 4334–4341.PubMedCrossRefGoogle Scholar
  8. Cevallos-Cevallos, J. M., García-Torres, R., Etxeberria, E., & Reyes-De-Corcuera, J. I. (2011). GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus huanglongbing and zinc deficiency in leaves of ‘Valencia’ sweet orange from commercial groves. Phytochemical Analysis, 22, 236–246.PubMedCrossRefGoogle Scholar
  9. Dharmawan, J., Kasapis, S., Sriramula, P., Lear, M. J., & Curran, P. (2008). Evaluation of aroma-active compounds in Pontianak orange peel oil (Citrus nobilis Lour. Var. microcarpa Hassk.) by gas chromatography–olfactometry, aroma reconstitution, and omission test. Journal of Agricultural and Food Chemistry, 57, 239–244.CrossRefGoogle Scholar
  10. Ding, X. B., Fan, S. J., Lu, Y., et al. (2012). Citrus ichangensis peel extract exhibits anti-metabolic disorder effects by the inhibition of PPAR and LXR signaling in high-fat diet-induced C57BL/6 mouse. Evidence-Based Complementary and Alternative Medicine, 2012, 1–10.CrossRefGoogle Scholar
  11. Emwas, A. M., Salek, R. M., Griffin, J. L., & Merzaban, J. (2013). NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics, 9, 1048–1072.CrossRefGoogle Scholar
  12. Farag, M. A., Mahrous, E. A., Lübken, T., Porzel, A., & Wessjohann, L. (2013). Classification of commercial cultivars of Humulus lupulus L. (hop) by chemometric pixel analysis of two dimensional nuclear magnetic resonance spectra. Metabolomics, 10, 1–12.Google Scholar
  13. Farag, M. A., Porzel, A., & Wessjohann, L. A. (2012). Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry, 76, 60–72.PubMedCrossRefGoogle Scholar
  14. Fiehn, O. (2002). Metabolomics–the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.PubMedCrossRefGoogle Scholar
  15. Frydman, A., Liberman, R., Huhman, D. V., et al. (2013). The molecular and enzymatic basis of bitter/non-bitter flavor of citrus fruit: evolution of branch-forming rhamnosyltransferases under domestication. The Plant Journal, 73, 166–178.PubMedCrossRefGoogle Scholar
  16. Gulsen, O., & Roose, M. (2001). Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. Journal of the American Society for Horticultural Science, 126, 309–317.Google Scholar
  17. Handa, T., Ishizawa, Y., & Oogaki, C. (1986). Phylogenetic study of fraction I protein in the genus Citrus and its close related genera. Idengaku Zasshi, 61, 15–24.Google Scholar
  18. Herrero, R., Asíns, M. J., Carbonell, E. A., & Navarro, L. (1996). Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecies and intragenus genetic variability. Theoretical and Applied Genetics, 92, 599–609.PubMedCrossRefGoogle Scholar
  19. Hosni, K., Zahed, N., Chrif, R. F., et al. (2010). Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chemistry, 123, 1098–1104.CrossRefGoogle Scholar
  20. Jing, L., Lei, Z. T., Li, L. G., et al. (2014). Antifungal activity of citrus essential oils. Journal of Agricultural and Food Chemistry, 62, 3011–3033.CrossRefGoogle Scholar
  21. Jing, L., Zhang, Y., Fan, S. J., et al. (2013). Preventive and ameliorating effects of citrus d-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity. European Journal of Pharmacology, 715, 46–55.PubMedCrossRefGoogle Scholar
  22. Lei, Z. T., Huhman, D. V., & Sumner, L. W. (2011). Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry, 286, 25435–25442.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lei, Z. T., Li, H. Q., Chang, J. L., Zhao, P. X., & Sumner, L. W. (2012). MET-IDEA version 2.06; improved efficiency and additional functions for mass spectrometry-based metabolomics data processing. Metabolomics, 8, 105–110.CrossRefGoogle Scholar
  24. Li, X. M., Xie, R. J., Lu, Z. H., & Zhou, Z. Q. (2010). The origin of cultivated citrus as inferred from internal transcribed spacer and chloroplast DNA sequence and amplified fragment length polymorphism fingerprints. Journal of the American Society for Horticultural Science, 135, 341–350.Google Scholar
  25. Liu, C. H., Jiang, D., Cheng, Y. J., et al. (2013). Chemotaxonomic study of Citrus, Poncirus and Fortunella genotypes based on peel oil volatile compounds-deciphering the genetic origin of mangshanyegan (Citrus nobilis Lauriro). PLoS One, 8, e58411.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lota, M. L., de Rocca Serra, D., Tomi, F., & Casanova, J. (2000). Chemical variability of peel and leaf essential oils of mandarins from Citrus reticulata Blanco. Biochemical Systematics and Ecology, 28, 61–78.CrossRefGoogle Scholar
  27. Lota, M. L., de Rocca Serra, D., Tomi, F., & Casanova, J. (2001). Chemical variability of peel and leaf essential oils of 15 species of mandarins. Biochemical Systematics and Ecology, 29, 77–104.PubMedCrossRefGoogle Scholar
  28. Lu, Z. H., Zhou, Z. Q., & Xie, R. J. (2011). Molecular phylogeny of the “true citrus fruit trees” group (Aurantioideae, Rutaceae) as inferred from chloroplast DNA sequence. Agricultural Sciences in China, 10, 49–57.CrossRefGoogle Scholar
  29. Malik, M., Scora, R., & Soost, R. (1974). Studies on the origin of the lemon. Hilgardia, 42, 361–382.CrossRefGoogle Scholar
  30. Mehl, F., Marti, G., Boccard, J., et al. (2014). Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: a metabolomic approach. Food Chemistry, 143, 325–335.PubMedCrossRefGoogle Scholar
  31. Menichini, F., Loizzo, M. R., Bonesi, M., et al. (2011). Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from Citrus medica L. cv Diamante flowers, leaves and fruits at two maturity stages. Food and Chemical Toxicology, 49, 1549–1555.PubMedCrossRefGoogle Scholar
  32. Minh Tu, N. T., Thanh, L., Une, A., Ukeda, H., & Sawamura, M. (2002). Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils. Flavour and Fragrance Journal, 17, 169–174.CrossRefGoogle Scholar
  33. Moore, G. A. (2001). Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends in Genetics, 17, 536–540.PubMedCrossRefGoogle Scholar
  34. Nicolosi, E., Deng, Z. N., Gentile, A., et al. (2000). Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theoretical and Applied Genetics, 100, 1155–1166.CrossRefGoogle Scholar
  35. Njoroge, S. M., Koaze, H., Karanja, P. N., & Sawamura, M. (2005). Volatile constituents of redblush grapefruit (Citrus paradisi) and pummelo (Citrus grandis) peel essential oils from Kenya. Journal of Agricultural and Food Chemistry, 53, 9790–9794.PubMedCrossRefGoogle Scholar
  36. Njoroge, S., Mungai, H., Koaze, H., Phi, N., & Sawamura, M. (2006). Volatile constituents of mandarin (Citrus reticulata Blanco) peel oil from Burundi. Journal of Essential Oil Research, 18, 659–662.CrossRefGoogle Scholar
  37. Ortiz, J. M., Kumamoto, J., & Scora, R. W. (1978). Possible relationships among sour oranges by analysis of their essential oils. International Flavours and Food Additives, 9, 224–226.Google Scholar
  38. Pan, Z. Y., Li, Y., Deng, X. X., & Xiao, S. Y. (2013). Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry. Metabolomics, 10, 1–16.Google Scholar
  39. Pang, X. M., Hu, C. G., & Deng, X. X. (2003). Phylogenetic relationships among Citrus and its relatives as revealed by SSR markers. Acta Genetica Sinica, 30, 81–87.PubMedGoogle Scholar
  40. Park, H. J., Jung, U. J., Cho, S. J., et al. (2013). Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose-and lipid-regulating enzymes in db/db mice. The Journal of Nutritional Biochemistry, 24, 419–427.PubMedCrossRefGoogle Scholar
  41. Schauer, N., & Fernie, A. R. (2006). Plant metabolomics: towards biological function and mechanism. Trends in Plant Science, 11, 508–516.PubMedCrossRefGoogle Scholar
  42. Scora, R. W. (1975). On the history and origin of Citrus. Bulletin of the Torrey Botanical Club, 102, 369–375.CrossRefGoogle Scholar
  43. Strehmel, N., Kopka, J., Scheel, D., & Böttcher, C. (2013). Annotating unknown components from GC/EI-MS-based metabolite profiling experiments using GC/APCI (+)-QTOFMS. Metabolomics, 10, 1–13.Google Scholar
  44. Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry, 62, 817–836.PubMedCrossRefGoogle Scholar
  46. Sun, C. D., Chen, K. S., Chen, Y., & Chen, Q. J. (2005). Contents and antioxidant capacity of limonin and nomilin in different tissues of citrus fruit of four cultivars during fruit growth and maturation. Food Chemistry, 93, 599–605.CrossRefGoogle Scholar
  47. Talon, M., & Gmitter, F. G. (2008). Citrus genomics. International Journal of Plant Genomics, 2008, 1–17.CrossRefGoogle Scholar
  48. Torres, A. M., Soost, R. K., & Diedenhofen, U. (1978). Leaf isozymes as genetic markers in Citrus. American Journal of Botany, 65, 869–881.CrossRefGoogle Scholar
  49. Tripoli, E., Guardia, M. L., Giammanco, S., Majo, D. D., & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry, 104, 466–479.CrossRefGoogle Scholar
  50. Venturini, N., Curk, F., Desjobert, J. M., et al. (2010). Chemotaxonomic investigations of peel and petitgrain essential oils from 17 citron cultivars. Chemistry & Biodiversity, 7, 736–751.CrossRefGoogle Scholar
  51. Webber, H. J. (1943). Cultivated varieties of citrus. The citrus industry, 1, 475–668.Google Scholar
  52. Wishart, D. S. (2008). Quantitative metabolomics using NMR. TrAC Trends in Analytical Chemistry, 27, 228–237.CrossRefGoogle Scholar
  53. Yun, Z., Gao, H. J., Liu, P., et al. (2013). Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biology, 13, 44.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Zhou, Z. Q. (1992). A study on the phylogenetic relationships of loose skinned oranges in China. Journal of Southwest Agricultural University, 14, 451–453.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Li Jing
    • 1
    • 2
    • 3
  • Zhentian Lei
    • 2
  • Guiwei Zhang
    • 1
    • 3
  • Alan Cesar Pilon
    • 2
    • 4
  • David V. Huhman
    • 2
  • Rangjin Xie
    • 5
  • Wanpeng Xi
    • 1
    • 3
  • Zhiqin Zhou
    • 3
    • 1
    Email author
  • Lloyd W. Sumner
    • 2
    Email author
  1. 1.College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingChina
  2. 2.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  3. 3.Key Laboratory of Horticulture Science for Southern Mountainous RegionsMinistry of EducationChongqingChina
  4. 4.Nucleus of Bioassays, Biosynthesis and Ecophysiology of Natural Products -NuBBESão Paulo State University - UNESPAraraquaraBrazil
  5. 5.Citrus Research InstituteChinese Academy of Agricultural Sciences/Southwest UniversityChongqingChina

Personalised recommendations