Advertisement

Metabolomics

, Volume 11, Issue 4, pp 920–938 | Cite as

Metabolomics reveals differential metabolic adjustments of normal and overweight subjects during overfeeding

  • Beatrice Morio
  • Blandine Comte
  • Jean-François Martin
  • Emilie Chanseaume
  • Maud Alligier
  • Christophe Junot
  • Bernard Lyan
  • Yves Boirie
  • Hubert Vidal
  • Martine Laville
  • Estelle Pujos-Guillot
  • Jean-Louis SébédioEmail author
Original Article

Abstract

Changes in eating habits, food composition and processing are involved in the “nutritional transition” that accompanied the obesity pandemic and the burst of metabolic diseases. This study is one of the first to describe the metabolic trajectories that differentiate the responses of overweight (OW) from lean individuals during weight gain. Nineteen lean and 19 OW male volunteers were submitted to moderate weight gain using a lipid-enriched overfeeding protocol designed to add about 3,300 kJ per day in excess to their usual diet. Metabolic explorations in combination with plasma and urine metabolomic profiles using liquid chromatography coupled with mass spectrometry were determined along 8 weeks to compare metabolic trajectories and determine early changes in metabolic processes after identification of specific early responding markers. Urinary metabolomic profiles during overfeeding evidenced differences in metabolic trajectories between groups, characterized by an increase over time of short-, medium-chain acylcarnitines, and bile acids in overweight subjects. For most of the anthropometric, metabolic parameters and plasma metabolomics data, the time-course evolution of all subjects was similar with distinction between groups. Plasma abundances of unsaturated lysophosphosphatidylcholine (22:6) decreased over time more importantly in normal weight subjects while most of those of the saturated species increased in both groups. These findings not evidenced with classical parameters, indicate a differential response to overfeeding in urine metabolomes of subjects, suggesting different nutrient metabolic fate with weight status. Subtle plasma and urine metabolic changes, mostly related to differences in the adaptation of β-oxidation and inflammation indicate a lower metabolic flexibility of OW subjects facing weight gain induced by overfeeding.

Keywords

Nutritional metabolomics UPLC–MS Urinary metabolic trajectories Weight gain Lipid-enriched overnutrition 

Notes

Acknowledgments

This research was supported by the Agence Nationale pour la Recherche (Project, PNRA-007, 2007-2010), Danone (18 months of a post-doctorate position), the Actions Incitatives from the Hospices Civils de Lyon and the Programme Hospitalier de Recherche Clinique Inter-régional. We would also like to thank H. Pereira for LC–MS analyses of plasma samples.

Conflict of interest

None of the authors have a conflict of interest relevant to this work.

Ethical Standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all participants for being included in the study.

Supplementary material

11306_2014_750_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)
11306_2014_750_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)
11306_2014_750_MOESM3_ESM.docx (39 kb)
Supplementary material 3 (DOCX 39 kb)
11306_2014_750_MOESM4_ESM.pptx (1.3 mb)
Supplementary material 4 (PPTX 1369 kb)
11306_2014_750_MOESM5_ESM.pdf (10 kb)
Supplementary material 5 (PDF 10 kb)

References

  1. Adams, S. H., Hoppel, C. L., Lok, K. H., Zhao, L., Wong, S. W., Minkler, P. E., et al. (2009). Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. Journal of Nutrition, 139(6), 1073–1081. doi: 10.3945/jn.108.103754.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alligier, M., Gabert, L., Meugnier, E., Lambert-Porcheron, S., Chanseaume, E., Pilleul, F., et al. (2013). Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. Journal of Clinical Endocrinology and Metabolism, 98(2), 802–810. doi: 10.1210/jc.2012-3289.PubMedCrossRefGoogle Scholar
  3. Alligier, M., Meugnier, E., Debard, C., Lambert-Porcheron, S., Chanseaume, E., Sothier, M., et al. (2012). Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. Journal of Clinical Endocrinology and Metabolism, 97(2), E183–E192. doi: 10.1210/jc.2011-2314.PubMedCrossRefGoogle Scholar
  4. Alnouti, Y., Csanaky, I. L., & Klaassen, C. D. (2008). Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 873(2), 209–217. doi: 10.1016/j.jchromb.2008.08.018.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Altmaier, E., Ramsay, S. L., Graber, A., Mewes, H. W., Weinberger, K. M., & Suhre, K. (2008). Bioinformatics analysis of targeted metabolomics–uncovering old and new tales of diabetic mice under medication. Endocrinology, 149(7), 3478–3489. doi: 10.1210/en.2007-1747.PubMedCrossRefGoogle Scholar
  6. Benton, H. P., Wong, D. M., Trauger, S. A., & Siuzdak, G. (2008). XCMS2: Processing tandem mass spectrometry data for metabolite identification and structural characterization. Analytical Chemistry, 80(16), 6382–6389. doi: 10.1021/ac800795f.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Caraux, G., & Pinloche, S. (2005). PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21(7), 1280–1281. doi: 10.1093/bioinformatics/bti141.PubMedCrossRefGoogle Scholar
  8. D’Arrigo, P., & Servi, S. (2010). Synthesis of lysophospholipids. Molecules, 15(3), 1354–1377. doi: 10.3390/molecules15031354.PubMedCrossRefGoogle Scholar
  9. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78. doi: 10.1002/mas.20108.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Duranti, G., Boenzi, S., Rizzo, C., Rava, L., Di Ciommo, V., Carrozzo, R., et al. (2008). Urine acylcarnitine analysis by ESI-MS/MS: A new tool for the diagnosis of peroxisomal biogenesis disorders. Clinica Chimica Acta, 398(1–2), 86–89. doi: 10.1016/j.cca.2008.08.018.CrossRefGoogle Scholar
  11. Eisenreich, W., & Bacher, A. (2007). Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochemistry, 68(22–24), 2799–2815. doi: 10.1016/j.phytochem.2007.09.028.PubMedCrossRefGoogle Scholar
  12. Franceschi, P., Masuero, D., Vrhovsek, U., Mattivi, F., & Wehrens, R. (2012). A benchmark spike-in data set for biomarker identification in metabolomics. Journal of Chemometrics, 26(1–2), 16–24. doi: 10.1002/cem.1420.CrossRefGoogle Scholar
  13. Galgani, J. E., Moro, C., & Ravussin, E. (2008). Metabolic flexibility and insulin resistance. The American Journal of Physiology—Endocrinology and Metabolism, 295(5), E1009–E1017. doi: 10.1152/ajpendo.90558.2008.CrossRefGoogle Scholar
  14. Gibney, M. J., Walsh, M., Brennan, L., Roche, H. M., German, B., & van Ommen, B. (2005). Metabolomics in human nutrition: Opportunities and challenges. American Journal of Clinical Nutrition, 82(3), 497–503.PubMedGoogle Scholar
  15. Ha, C. Y., Kim, J. Y., Paik, J. K., Kim, O. Y., Paik, Y. H., Lee, E. J., & Lee, J. H. (2012). The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clinical Endocrinology (Oxford), 76(5), 674–682. doi: 10.1111/j.1365-2265.2011.04244.x.CrossRefGoogle Scholar
  16. Hanhineva, K., Barri, T., Kolehmainen, M., Pekkinen, J., Pihlajamaki, J., Vesterbacka, A., et al. (2013). Comparative nontargeted profiling of metabolic changes in tissues and biofluids in high-fat diet-fed Ossabaw pig. Journal of Proteome Research, 12(9), 3980–3992. doi: 10.1021/pr400257d.PubMedCrossRefGoogle Scholar
  17. Huang, L. S., Hung, N. D., Sok, D. E., & Kim, M. R. (2010). Lysophosphatidylcholine containing docosahexaenoic acid at the sn-1 position is anti-inflammatory. Lipids, 45(3), 225–236. doi: 10.1007/s11745-010-3392-5.PubMedCrossRefGoogle Scholar
  18. Hung, N. D., Kim, M. R., & Sok, D. E. (2009). Anti-inflammatory action of arachidonoyl lysophosphatidylcholine or 15-hydroperoxy derivative in zymosan A-induced peritonitis. Prostaglandins & Other Lipid Mediators, 90(3–4), 105–111. doi: 10.1016/j.prostaglandins.2009.10.001.CrossRefGoogle Scholar
  19. Hung, N. D., Kim, M. R., & Sok, D. E. (2011). 2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. Lipids, 46(10), 893–906. doi: 10.1007/s11745-011-3589-2.PubMedCrossRefGoogle Scholar
  20. Hung, N. D., Sok, D. E., & Kim, M. R. (2012). Prevention of 1-palmitoyl lysophosphatidylcholine-induced inflammation by polyunsaturated acyl lysophosphatidylcholine. Inflammation Research, 61(5), 473–483. doi: 10.1007/s00011-012-0434-x.PubMedCrossRefGoogle Scholar
  21. Idle, J. R., & Gonzalez, F. J. (2007). Metabolomics. Cell Metabolism, 6(5), 348–351. doi: 10.1016/j.cmet.2007.10.005.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Joyce, S. A., & Gahan, C. G. (2014). The gut microbiota and the metabolic health of the host. Current Opinion in Gastroenterology, 30(2), 120–127. doi: 10.1097/MOG.0000000000000039.PubMedCrossRefGoogle Scholar
  23. Kaess, B. M., Pedley, A., Massaro, J. M., Murabito, J., Hoffmann, U., & Fox, C. S. (2012). The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia, 55(10), 2622–2630. doi: 10.1007/s00125-012-2639-5.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Katz, A., Nambi, S. S., Mather, K., Baron, A. D., Follmann, D. A., Sullivan, G., & Quon, M. J. (2000). Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. Journal of Clinical Endocrinology and Metabolism, 85(7), 2402–2410.PubMedCrossRefGoogle Scholar
  25. Kenny, L. C., Black, M. A., Poston, L., Taylor, R., Myers, J. E., Baker, P. N., et al. (2014). Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: The Screening for Pregnancy Endpoints (SCOPE) international cohort study. Hypertension, 64(3), 644–652. doi: 10.1161/HYPERTENSIONAHA.114.03578.PubMedCrossRefGoogle Scholar
  26. Kim, J. Y., Park, J. Y., Kim, O. Y., Ham, B. M., Kim, H. J., Kwon, D. Y., et al. (2010). Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). Journal of Proteome Research, 9(9), 4368–4375. doi: 10.1021/pr100101p.PubMedCrossRefGoogle Scholar
  27. Kootte, R. S., Vrieze, A., Holleman, F., Dallinga-Thie, G. M., Zoetendal, E. G., de Vos, W. M., et al. (2012). The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes, Obesity & Metabolism, 14(2), 112–120. doi: 10.1111/j.14631326.2011.01483.x.CrossRefGoogle Scholar
  28. Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M., Ilkayeva, O., et al. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism, 7(1), 45–56. doi: 10.1016/j.cmet.2007.10.013.PubMedCrossRefGoogle Scholar
  29. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews, 89(1), 147–191. doi: 10.1152/physrev.00010.2008.PubMedCrossRefGoogle Scholar
  30. Libert, R., Van Hoof, F., Thillaye, M., Vincent, M. F., Nassogne, M. C., de Hoffmann, E., & Schanck, A. (2000). Identification of undescribed medium-chain acylcarnitines present in urine of patients with propionic and methylmalonic acidemias. Clinica Chimica Acta, 295(1–2), 87–96.CrossRefGoogle Scholar
  31. Meugnier, E., Bossu, C., Oliel, M., Jeanne, S., Michaut, A., Sothier, M., et al. (2007). Changes in gene expression in skeletal muscle in response to fat overfeeding in lean men. Obesity (Silver Spring), 15(11), 2583–2594. doi: 10.1038/oby.2007.310.CrossRefGoogle Scholar
  32. Mihalik, S. J., Goodpaster, B. H., Kelley, D. E., Chace, D. H., Vockley, J., Toledo, F. G., & DeLany, J. P. (2010). Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring), 18(9), 1695–1700. doi: 10.1038/oby.2009.510.CrossRefGoogle Scholar
  33. Mihalik, S. J., Michaliszyn, S. F., de las Heras, J., Bacha, F., Lee, S., Chace, D. H., et al. (2012). Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care, 35(3), 605–611. doi: 10.2337/DC11-1577.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Moco, S., Bino, R. J., De Vos, R. C. H., & Vervoort, J. (2007). Metabolomics technologies and metabolite identification. TrAC Trends in Analytical Chemistry, 26(9), 855–866. doi: 10.1016/j.trac.2007.08.003.CrossRefGoogle Scholar
  35. Momken, I., Stevens, L., Bergouignan, A., Desplanches, D., Rudwill, F., Chery, I., et al. (2011). Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J., 25(10), 3646–3660. doi: 10.1096/fj.10-177295.PubMedCrossRefGoogle Scholar
  36. Nazare, J. A., Normand, S., Oste Triantafyllou, A., Brac de la Perriere, A., Desage, M., & Laville, M. (2009). Modulation of the postprandial phase by beta-glucan in overweight subjects: Effects on glucose and insulin kinetics. Molecular Nutrition & Food Research, 53(3), 361–369. doi: 10.1002/mnfr.200800023.CrossRefGoogle Scholar
  37. Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15(5), 606–614. doi: 10.1016/j.cmet.2012.01.024.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326. doi: 10.1016/j.cmet.2009.02.002.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189. doi: 10.1080/004982599238047.PubMedCrossRefGoogle Scholar
  40. Nieuwdorp, M., Gilijamse, P. W., Pai, N., & Kaplan, L. M. (2014). Role of the microbiome in energy regulation and metabolism. Gastroenterology, 146(6), 1525–1533. doi: 10.1053/j.gastro.2014.02.008.PubMedCrossRefGoogle Scholar
  41. Pan, Z., & Raftery, D. (2007). Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and Bioanalytical Chemistry, 387(2), 525–527. doi: 10.1007/s00216-006-0687-8.PubMedCrossRefGoogle Scholar
  42. Pereira, H., Martin, J. F., Joly, C., Sebedio, J. L., & Pujos-Guillot, E. (2010). Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics, 6(2), 207–218. doi: 10.1007/s11306-009-0188-9.CrossRefGoogle Scholar
  43. Pietilainen, K. H., Sysi-Aho, M., Rissanen, A., Seppanen-Laakso, T., Yki-Jarvinen, H., Kaprio, J., & Oresic, M. (2007). Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study. PLoS One, 2(2), e218. doi: 10.1371/journal.pone.0000218.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Popkin, B. M. (2011). Is the obesity epidemic a national security issue around the globe? Current opinion in Endocrinology, Diabetes, and Obesity, 18(5), 328–331. doi: 10.1097/MED.0b013e3283471c74.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Rimbert, V., Boirie, Y., Bedu, M., Hocquette, J. F., Ritz, P., & Morio, B. (2004). Muscle fat oxidative capacity is not impaired by age but by physical inactivity: Association with insulin sensitivity. FASEB J, 18(6), 737–739. doi: 10.1096/fj.03-1104fje.PubMedGoogle Scholar
  46. Rubio-Aliaga, I., Roos, Bd, Sailer, M., McLoughlin, G. A., Boekschoten, M. V., van Erk, M., et al. (2011). Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention. Physiological Genomics, 43(8), 408–416. doi: 10.1152/physiolgenomics.00179.2010.PubMedCrossRefGoogle Scholar
  47. Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10, 361–374. doi: 10.1007/s11306-013-0598-6.CrossRefGoogle Scholar
  48. Sevastou, I., Kaffe, E., Mouratis, M. A., & Aidinis, V. (2013). Lysoglycerophospholipids in chronic inflammatory disorders: The PLA(2)/LPC and ATX/LPA axes. Biochimica et Biophysica Acta, 1831(1), 42–60. doi: 10.1016/j.bbalip.2012.07.019.PubMedCrossRefGoogle Scholar
  49. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. doi: 10.1021/ac051437y.PubMedCrossRefGoogle Scholar
  50. Steiber, A., Kerner, J., & Hoppel, C. L. (2004). Carnitine: A nutritional, biosynthetic, and functional perspective. Molecular Aspects of Medicine, 25(5–6), 455–473. doi: 10.1016/j.mam.2004.06.006.PubMedCrossRefGoogle Scholar
  51. Sumner, L. W., Amberg, A., Barrett, A., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(9), 211–221.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Taylor, D. R., Alaghband-Zadeh, J., Cross, G. F., Omar, S., le Roux, C. W., & Vincent, R. P. (2014). Urine bile acids relate to glucose control in patients with type 2 diabetes mellitus and a body mass index below 30 kg/m2. PLoS One, 9(4), e93540. doi: 10.1371/journal.pone.0093540.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Vrieze, A., Out, C., Fuentes, S., Jonker, L., Reuling, I., Kootte, R. S., et al. (2014). Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. Journal of Hepatology, 60(4), 824–831. doi: 10.1016/j.jhep.2013.11.034.PubMedCrossRefGoogle Scholar
  54. Wang, C., Feng, R. N., Sun, D. J., Li, Y., Bi, X. X., & Sun, C. H. (2011). Metabolic profiling of urine in young obese men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS). Journal of Chromatography B, 879(27), 2871–2876. doi: 10.1016/j.jchromb.2011.08.014.CrossRefGoogle Scholar
  55. Wishart, D. S. (2007). Current progress in computational metabolomics. Briefings in Bioinformatics, 8(5), 279–293. doi: 10.1093/bib/bbm030.PubMedCrossRefGoogle Scholar
  56. Zeng, M., Liang, Y., Li, H., Wang, M., Wang, B., Chen, X., et al. (2010). Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 52(2), 265–272. doi: 10.1016/j.jpba.2010.01.002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Beatrice Morio
    • 1
    • 2
  • Blandine Comte
    • 1
    • 2
  • Jean-François Martin
    • 1
    • 2
    • 3
  • Emilie Chanseaume
    • 1
    • 2
  • Maud Alligier
    • 5
    • 6
  • Christophe Junot
    • 4
  • Bernard Lyan
    • 1
    • 2
    • 3
  • Yves Boirie
    • 1
    • 2
  • Hubert Vidal
    • 5
    • 6
  • Martine Laville
    • 5
    • 6
  • Estelle Pujos-Guillot
    • 1
    • 2
    • 3
  • Jean-Louis Sébédio
    • 1
    • 2
    • 3
    • 7
    Email author
  1. 1.INRA, UMR 1019UNH, CRNH AuvergneClermont-FerrandFrance
  2. 2.Clermont Université, Université d’Auvergne, Unité de Nutrition Humaine, BP 10448Clermont-FerrandFrance
  3. 3.INRA, UMR 1019Plateforme d’Exploration du Métabolisme, UNHClermont-FerrandFrance
  4. 4.CEA-LEMMGif sur Yvette cedexFrance
  5. 5.Institut National de la Santé et de la Recherche Médicale Unit 1060, CarMeN Laboratory and Centre Européen Nutrition SantéLyon 1 UniversityOullinsFrance
  6. 6.Centre de Recherche en Nutrition Humaine (CRNH) Rhône-AlpesCentre Hospitalier Lyon-SudPierre BéniteFrance
  7. 7.INRA, UMR 1019Clermont University, Research Centre of Clermont-Ferrand/TheixSaint-Genès-ChampanelleFrance

Personalised recommendations