, Volume 11, Issue 4, pp 797–806 | Cite as

An NMR metabolomics approach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the PREDIMED study

  • Rosa Vázquez-Fresno
  • Rafael LlorachEmail author
  • Mireia Urpi-Sarda
  • Olha Khymenets
  • Mònica Bulló
  • Dolores Corella
  • Montserrat Fitó
  • Miguel Angel Martínez-González
  • Ramon Estruch
  • Cristina Andres-LacuevaEmail author
Original Article


The development of robust biomarkers of consumption would improve the classification of participants with regard to their dietary exposure. In addition, validation of them in free-living individuals remains an important challenge. The aim of this study is to assess wine intake biomarkers using an NMR metabolomic approach to measure the utility of these biomarkers in a wine interventional study (WIS, n = 56) and also to evaluate them in a free-living individuals (PREDIMED study, n = 91). Nine metabolites showed a significantly higher presence in urinary excretion in WIS after wine intake: five food metabolome metabolites (tartrate, ethyl glucuronide [EtG], 2,3-butanediol, mannitol, and ethanol); one related to the endogenous response to wine exposure (3-methyl-2-oxovalerate) and three unidentified compounds. Receiver operating characteristic (ROC) curve for each single metabolite were evaluated and exhibited areas under the curves (AUC) between 67.4 and 86.3 % when they were evaluated individually. Then, a logistic regression model was fitted to generate a combined-biomarkers model using these metabolites. The model generated which included tartrate-EtG, showed an AUC of 90.7 % in WIS. Similarly, the AUC in the PREDIMED study was 92.4 %. Results showed that a model combining tartrate-EtG is more useful for evaluating exposure to wine than single biomarkers, both in interventional studies and epidemiological data. To our knowledge, this is the first time that a combined-biomarker model using an NMR platform in wine biomarkers’ research has been generated and reproduced in a free-living population.


Biomarkers Nutrimetabolomics NMR Wine Interventional study Cohort study 



Area under the curve


Confidence interval


Correlation spectroscopy




Ethyl glucuronide


Food frequency questionnaires


Food metabolome


Interquartile range






Receiver operating characteristic






Unassigned compound


Wine interventional study



Supported by the Spanish National Grants from Ministry of Economy and Competitiveness (MINECO) and cofounded by FEDER (Fondo Europeo de Desarrollo Regional): AGL2006-14228-C03-02/ALI, AGL2009-13906-C02-01, AGL2010-10084-E, the CONSOLIDER INGENIO 2010 Programme, FUN-C-FOOD (CSD2007-063), CIberOBN, as well as PI13/01172 Project, (Plan N de I+D+i 2013-2016) by ISCII-Subdirección General de Evaluación y Fomento de la Investigación. We also thank the award of 2014SGR1566 from the Generalitat de Catalunya’s Agency AGAUR. R.V.-F, O.K, M.U.-S and R. Ll. would like to thank the FPI fellowship, the “Juan de la Cierva” and the “Ramon y Cajal” programmes of the Spanish Government and the Fondo Social Europeo. We thank the participants for their collaboration in the study.

Conflict of interest

All the authors declare no competing financial interest.

Compliance with ethical requirements

WIS study. The study received the ethical approval Institutional Review Board of the Hospital Clinic of Barcelona. All participants had signed an informed consent. This trial has been registered in the Current Controlled Trials in London, International Standard Randomized Controlled Trial Number (ISRCTN88720134).

PREDIMED study. The trial protocol was conducted according to the Declaration of Helsinki and was approved by the institutional review boards of all the centres involved. All participants had signed an informed consent. This trial has been registered in the Current Controlled Trials in London, International Standard Randomized Controlled Trial Number (ISRCTN35739639).

Supplementary material

11306_2014_735_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)


  1. Bahado-Singh, R. O., Akolekar, R., Mandal, R., et al. (2012). Metabolomics and first-trimester prediction of early-onset preeclampsia. The journal of maternal-fetal & neonatal medicine, 25, 1840–1847.CrossRefGoogle Scholar
  2. Bartolomé, B., Monagas, M., Garrido, I., et al. (2010). Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: From chemical characterization to targeted analysis of phenolic metabolites in humans. Archives of Biochemistry and Biophysics, 501, 124–133.PubMedCrossRefGoogle Scholar
  3. Beck, O., Stephanson, N., Böttcher, M., et al. (2007). Biomarkers to disclose recent intake of alcohol: potential of 5-hydroxytryptophol glucuronide testing using new direct UPLC-tandem MS and ELISA methods. Alcohol and Alcoholism, 42, 321–325.PubMedCrossRefGoogle Scholar
  4. Bemrah, N., Vin, K., Sirot, V., et al. (2012). Assessment of dietary exposure to annatto (E160b), nitrites (E249-250), sulphites (E220-228) and tartaric acid (E334) in the French population: the second French total diet study. Food additives and contaminants Part A, 29, 875–885.CrossRefGoogle Scholar
  5. Chiva-Blanch, G., Urpi-Sarda, M., Llorach, R., et al. (2012). Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. American Journal of Clinical Nutrition, 95, 326–334.PubMedCrossRefGoogle Scholar
  6. Darias-Martín, J. J., Rodríguez, O., Díaz, E., & Lamuela-Raventós, R. M. (2000). Effect of skin contact on the antioxidant phenolics in white wine. Food Chemistry, 71, 483–487.CrossRefGoogle Scholar
  7. Donovan, J. L., Kasim-Karakas, S., German, J. B., & Waterhouse, A. L. (2002). Urinary excretion of catechin metabolites by human subjects after red wine consumption. British Journal of Nutrition, 87, 31–37.PubMedCrossRefGoogle Scholar
  8. Estruch, R. (2000). Wine and cardiovascular disease. Food Research International, 33, 219–226.CrossRefGoogle Scholar
  9. Estruch, R., Martínez-González, M. A., Corella, D., et al. (2006). Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Annals of Internal Medicine, 145, 1–11.PubMedCrossRefGoogle Scholar
  10. Estruch, R., Ros, E., Salas-Salvadó, J., et al. (2013). Primary prevention of cardiovascular disease with a Mediterranean diet. New England Journal of Medicine, 368, 1279–1290.PubMedCrossRefGoogle Scholar
  11. Fernández-Ballart, J. D., Piñol, J. L., Zazpe, I., et al. (2010). Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. British Journal of Nutrition, 103, 1808–1816.PubMedCrossRefGoogle Scholar
  12. Garcia-Aloy, M., Llorach, R., Urpi-Sarda, M., et al. (2014). Nutrimetabolomics fingerprinting to identify biomarkers of bread exposure in a free-living population from the PREDIMED study cohort. Metabolomics, 1–11. doi: 10.1007/s11306-014-0682-6.
  13. Gonthier, M.-P., Cheynier, V., Donovan, J. L., et al. (2003). Microbial Aromatic Acid Metabolites Formed in the Gut Account for a Major Fraction of the Polyphenols Excreted in Urine of Rats Fed Red Wine Polyphenols. Journal of Nutrition, 133, 461–467.PubMedGoogle Scholar
  14. Heinzmann, S. S., Brown, I. J., Chan, Q., et al. (2010). Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. American Journal of Clinical Nutrition, 92, 436–443.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Heinzmann, S. S., Merrifield, C. A., Rezzi, S., et al. (2011). Stability and Robustness of Human Metabolic Phenotypes in Response to Sequential Food Challenges. Journal of Proteome Research, 11, 643–655.PubMedCrossRefGoogle Scholar
  16. Helander, A., Böttcher, M., Fehr, C., Dahmen, N., & Beck, O. (2009). Detection Times for Urinary Ethyl Glucuronide and Ethyl Sulfate in Heavy Drinkers during Alcohol Detoxification. Alcohol and Alcoholism, 44, 55–61.PubMedCrossRefGoogle Scholar
  17. Høiseth, G., Bernard, J. P., Karinen, R., et al. (2007). A pharmacokinetic study of ethyl glucuronide in blood and urine: Applications to forensic toxicology. Forensic Science International, 172, 119–124.PubMedCrossRefGoogle Scholar
  18. Hwa, H.-L., Kuo, W.-H., Chang, L.-Y., et al. (2008). Prediction of breast cancer and lymph node metastatic status with tumour markers using logistic regression models. J Eval Clin Pract, 14, 275–280.PubMedCrossRefGoogle Scholar
  19. Jacobs, D. M., Deltimple, N., van Velzen, E., et al. (2008). (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR in Biomedicine, 21, 615–626.PubMedCrossRefGoogle Scholar
  20. Lande, R. G., & Marin, B. (2013). A Comparison of Two Alcohol Biomarkers in Clinical Practice: Ethyl Glucuronide Versus Ethyl Sulfate. Journal of Addictive Diseases, 32, 288–292.PubMedCrossRefGoogle Scholar
  21. Liu, S. Q. (2002). Malolactic fermentation in wine – beyond deacidification. Journal of Applied Microbiology, 92, 589–601.PubMedCrossRefGoogle Scholar
  22. Llorach, R., Garcia-Aloy, M., Tulipani, S., Vazquez-Fresno, R., & Andres-Lacueva, C. (2012). Nutrimetabolomic Strategies To Develop New Biomarkers of Intake and Health Effects. Journal of Agriculture and Food Chemistry, 60, 8797–8808.CrossRefGoogle Scholar
  23. Lloyd, A. J., Beckmann, M., Haldar, S., et al. (2013). Data-driven strategy for the discovery of potential urinary biomarkers of habitual dietary exposure. American Journal of Clinical Nutrition, 97, 377–389.PubMedCrossRefGoogle Scholar
  24. López-Tamames, E., Puig-Deu, M. A., Teixeira, E., & Buxaderas, S. (1996). Organic acids, sugars, and glycerol content in white winemaking products determined by HPLC: Relationship to climate and varietal factors. American Journal of Enology and Viticulture, 47, 193–198.Google Scholar
  25. Lord, R. S., Burdette, C. K., & Bralley, J. A. (2005). Significance of Urinary Tartaric Acid. Clinical Chemistry, 51, 672–673.PubMedCrossRefGoogle Scholar
  26. Mennen, L. I., Sapinho, D., Ito, H., et al. (2006). Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. British Journal of Nutrition, 96, 191–198.PubMedCrossRefGoogle Scholar
  27. Menni, C., Zhai, G., Macgregor, A., et al. (2013). Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics, 9, 506–514.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Murabito, J. M., Keyes, M. J., Guo, C.-Y., et al. (2009). Cross-sectional relations of multiple inflammatory biomarkers to peripheral arterial disease: The Framingham Offspring Study. Atherosclerosis, 203, 509–514.PubMedCentralPubMedCrossRefGoogle Scholar
  29. O’Gorman, A., Gibbons, H., & Brennan, L. (2013). Metabolomics in the identification of biomarkers of dietary intake. Computational and Structural Biotechnology Journal, 4, e201301004. doi: 10.5936/csbj.201301004.
  30. Odunsi, K., Wollman, R. M., Ambrosone, C. B., et al. (2005). Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. International Journal of Cancer, 113, 782–788.CrossRefGoogle Scholar
  31. O’Sullivan, A., Gibney, M. J., & Brennan, L. (2011). Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. American Journal of Clinical Nutrition, 93, 314–321.PubMedCrossRefGoogle Scholar
  32. Pérez-Magariño, S., & González-San José, M. L. (2004). Evolution of Flavanols, Anthocyanins, and Their Derivatives during the Aging of Red Wines Elaborated from Grapes Harvested at Different Stages of Ripening. Journal of Agriculture and Food Chemistry, 52, 1181–1189.CrossRefGoogle Scholar
  33. Pujos-Guillot, E., Hubert, J., Martin, J.-F., et al. (2013). Mass Spectrometry-based Metabolomics for the Discovery of Biomarkers of Fruit and Vegetable Intake: Citrus Fruit as a Case Study. Journal of Proteome Research, 12, 1645–1659.PubMedCrossRefGoogle Scholar
  34. Recamales, Á. F., Sayago, A., González-Miret, M. L., & Hernanz, D. (2006). The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Research International, 39, 220–229.CrossRefGoogle Scholar
  35. Robin, X., Turck, N., Hainard, A., et al. (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Roowi, S., Stalmach, A., Mullen, W., et al. (2009). Green Tea Flavan-3-ols: Colonic Degradation and Urinary Excretion of Catabolites by Humans. Journal of Agriculture and Food Chemistry, 58, 1296–1304.CrossRefGoogle Scholar
  37. Roussis, I. G., Lambropoulos, I., & Papadopoulou, D. (2005). Inhibition of the decline of volatile esters and terpenols during oxidative storage of Muscat-white and Xinomavro-red wine by caffeic acid and N-acetyl-cysteine. Food Chemistry, 93, 485–492.CrossRefGoogle Scholar
  38. Salinas, M. R., Garijo, J., Pardo, F., Zalacain, A., & Alonso, G. L. (2005). Influence of prefermentative maceration temperature on the colour and the phenolic and volatile composition of rosé wines. Journal of the Science of Food and Agriculture, 85, 1527–1536.CrossRefGoogle Scholar
  39. Scalbert, A., Brennan, L., Manach, C., et al. (2014). The food metabolome: a window over dietary exposure. American Journal of Clinical Nutrition, 99, 1286–1308.PubMedCrossRefGoogle Scholar
  40. Simonetti, P., Gardana, C., & Pietta, P. (2001). Caffeic acid as biomarker of red wine intake. Methods in Enzymology, 335, 122–130.PubMedGoogle Scholar
  41. Son, H.-S., Hwang, G.-S., Kim, K. M., et al. (2009). Metabolomic Studies on Geographical Grapes and Their Wines Using 1H NMR Analysis Coupled with Multivariate Statistics. Journal of Agriculture and Food Chemistry, 57, 1481–1490.CrossRefGoogle Scholar
  42. Son, H. S., Kim, K. M., van den Berg, F., et al. (2008). 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. Journal of Agriculture and Food Chemistry, 56, 8007–8016.CrossRefGoogle Scholar
  43. Sousa, S. A. A., Magalhães, A., & Ferreira, M. M. C. (2013). Optimized bucketing for NMR spectra: Three case studies. Chemometrics and Intelligent Laborary Systems, 122, 93–102.CrossRefGoogle Scholar
  44. Stalmach, A., Edwards, C. A., Wightman, J. D., & Crozier, A. (2013). Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food & Function, 4, 52–62.CrossRefGoogle Scholar
  45. Teissedre, P.-L., & Landrault, N. (2000). Wine phenolics: contribution to dietary intake and bioavailability. Food Research International, 33, 461–467.CrossRefGoogle Scholar
  46. Urpi-Sarda, M., Garrido, I., Monagas, M., et al. (2009a). Profile of Plasma and Urine Metabolites after the Intake of Almond [Prunus dulcis (Mill.) D.A. Webb] Polyphenols in Humans. Journal of Agriculture and Food Chemistry, 57, 10134–10142.CrossRefGoogle Scholar
  47. Urpi-Sarda, M., Monagas, M., Khan, N., et al. (2009b). Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Analytical and Bioanalytical Chemistry, 394, 1545–1556.PubMedCrossRefGoogle Scholar
  48. van Dorsten, F. A., Grün, C. H., van Velzen, E. J., et al. (2010). The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Molecular Nutrition & Food Research, 54, 897–908.CrossRefGoogle Scholar
  49. Vázquez-Fresno, R., Llorach, R., Alcaro, F., et al. (2012). (1) H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors. Electrophoresis, 33, 2345–2354.PubMedCrossRefGoogle Scholar
  50. Weinmann, W., Schaefer, P., Thierauf, A., Schreiber, A., & Wurst, F. M. (2004). Confirmatory analysis of ethylglucuronide in urine by liquid-chromatography/electrospray ionization/tandem mass spectrometry according to forensic guidelines. Journal of the American Society for Mass Spectrometry, 15, 188–193.PubMedCrossRefGoogle Scholar
  51. Wojcik, M. H., & Hawthorne, J. S. (2007). Sensitivity of commercial ethyl glucuronide (ETG) testing in screening for alcohol abstinence. Alcohol and Alcoholism, 42, 317–320.PubMedCrossRefGoogle Scholar
  52. Wurst, F. M., Dresen, S., Allen, J. P., et al. (2006). Ethyl sulphate: a direct ethanol metabolite reflecting recent alcohol consumption. Addiction, 101, 204–211.PubMedCrossRefGoogle Scholar
  53. Xia, J., Broadhurst, D., Wilson, M., & Wishart, D. (2013). Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics, 9, 280–299.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6, 743–760.PubMedCrossRefGoogle Scholar
  55. Zamora-Ros, R., Urpí-Sardà, M., Lamuela-Raventós, R. M., et al. (2009). Resveratrol metabolites in urine as a biomarker of wine intake in free-living subjects: The PREDIMED Study. Free Radical Biology and Medicine, 46, 1562–1566.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rosa Vázquez-Fresno
    • 1
    • 2
  • Rafael Llorach
    • 1
    • 2
    Email author
  • Mireia Urpi-Sarda
    • 1
    • 2
  • Olha Khymenets
    • 1
    • 2
  • Mònica Bulló
    • 3
    • 4
  • Dolores Corella
    • 4
    • 5
  • Montserrat Fitó
    • 4
    • 6
  • Miguel Angel Martínez-González
    • 4
    • 7
  • Ramon Estruch
    • 4
    • 8
  • Cristina Andres-Lacueva
    • 1
    • 2
    Email author
  1. 1.Biomarkers and Nutrimetabolomic Lab. Nutrition and Food Science Department, XaRTA, INSA, Torribera Campus, Pharmacy FacultyUniversity of BarcelonaBarcelonaSpain
  2. 2.INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063Ministry of Science and InnovationBarcelonaSpain
  3. 3.Human Nutrition Unit, Biochemistry and Biotechnology Department and Hospital Universitari de Sant Joan de Reus, Institut d‘Investigació Sanitària Pere VirgiliUniversitat Rovira I VirgiliReusSpain
  4. 4.CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn)Instituto de Salud Carlos IIIMadridSpain
  5. 5.Department of Preventive Medicine and Public HealthUniversity of ValenciaValenciaSpain
  6. 6.Cardiovascular Epidemiology UnitMunicipal Institute for Medical Research (IMIM)BarcelonaSpain
  7. 7.Department of Preventive Medicine and Public HealthUniversity of NavarraPamplonaSpain
  8. 8.Department of Internal Medicine, Hospital ClinicInstitut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS)BarcelonaSpain

Personalised recommendations