Skip to main content
Log in

Impact of induced drought stress on the metabolite profiles of barley grain

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the impact of drought stress on the metabolite profiles of barley (Hordeum vulgare L.) grain against the background of natural variability depending on growing location and season. Six barley genotypes were field-grown (i) under normal weather conditions at two different sites and (ii) under induced drought conditions, using a Rain-Out-Shelter. Both trials were performed in three consecutive seasons (2010–2012). Samples were subjected to a gas chromatography-mass spectrometry metabolite profiling procedure, based on the extraction and fractionation of a broad spectrum of low molecular weight metabolites ranging from lipophilic (e.g. triglyceride-derived fatty acids, free fatty acids, fatty alcohols, sterols) to hydrophilic (e.g. sugars, sugar alcohols, acids, amino acids and amines) compounds. The comparative assessment of the profiling data by means of multivariate analyses revealed that differences in lipophilic metabolites were mainly due to seasonal impact. In contrast water deficit was strongly reflected in quantitative changes of polar metabolites, irrespective of natural variability. The impact factor growing location was differently pronounced depending on the growing season. Univariate statistical analysis revealed 17 metabolites, including the monosaccharides fructose and glucose, the trisaccharide raffinose, several organic acids and the biogenic amine γ-aminobutyric acid to be significantly (p-value < 0.01) influenced by drought stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, I. M., Cao, F., Han, Y., Nadira, U. A., Zhang, G., & Wu, F. (2013). Differential changes in grain ultrastructure, amylase, protein and amino acids profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chemistry, 141, 2743–2750.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, I. M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D., et al. (2012). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63, 49–60.

    Article  PubMed  Google Scholar 

  • Ashoub, A., Beckhaus, T., Berberich, T., Karas, M., & Brüggemann, W. (2013). Comparative analysis of barley leaf proteome as affected by drought stress. Planta, 237(3), 771–781.

    Article  CAS  PubMed  Google Scholar 

  • Asiago, V. M., Hazebroek, J., Harp, T., & Zhong, C. (2012). Effects of genetics and environment on the metabolome of commercial maize hybrids: A multisite study. Journal of Agriculture and Food Chemistry, 60(46), 11498–11508.

    Article  CAS  Google Scholar 

  • Bandurska, H. (2000). Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injury? I. Free proline accumulation and membrane injury index in drought and osmotically stressed plants. Acta Physiologiae Plantarum, 22(4), 409–415.

    Article  CAS  Google Scholar 

  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Review in Plant Science, 24(23), 23–58.

    Article  CAS  Google Scholar 

  • Beleggia, R., Platani, C., Nigro, F., de Vita, P., Cattivelli, L., & Papa, R. (2013). Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat (Triticum durum Desf.) grain. Journal of Cereal Science, 57(2), 183–192.

    Article  CAS  Google Scholar 

  • Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptions to environmental stresses. The Plant Cell, 7, 1099–1111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouché, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9(3), 110–115.

    Article  PubMed  Google Scholar 

  • Bray, E. A. (1993). Molecular responses to water deficit. Plant Physiology, 103, 1035–1040.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chaves, M. M. (1991). Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42(234), 1–16.

    Article  CAS  Google Scholar 

  • Degenkolbe, T., Do, P. T., Kopka, J., Zuther, E., Hincha, D. K., Köhl, K. I., et al. (2013). Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS ONE, 8(5), 1–14.

    Article  Google Scholar 

  • Diab, A. A., Teulat-Merah, B., This, D., Ozturk, N. Z., Benscher, D., & Sorrells, M. E. (2004). Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theoretical and Applied Genetics, 109(7), 1417–1425.

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2009). Agribusiness handbook: Barley malt beer. Rome: FAO.

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2013). http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 22 November 2013.

  • Frank, T., Röhlig, R. M., Davies, H. V., Barros, E., & Engel, K.-H. (2012). Metabolite profiling of maize kernels—genetic modification vs. environmental influence. Journal of Agriculture and Food Chemistry, 60, 3005–3012.

    Article  CAS  Google Scholar 

  • Frank, T., Scholz, B., Peter, S., & Engel, K.-H. (2011). Metabolite profiling of barley: Influence of the malting process. Food Chemistry, 124(3), 948–957.

    Article  CAS  Google Scholar 

  • Frenzel, T., Miller, A., & Engel, K.-H. (2003). A methodology for automated comparative analysis of metabolite profiling data. European Food Research and Technology, 216(4), 335–342.

    CAS  Google Scholar 

  • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., et al. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60(12), 3531–3544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrigan, G. G., Stork, L. G., Riordan, S. G., Ridley, W. P., MacIsaac, S., & Halls, S. C. (2007). Metabolite analysis of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season. Journal of Agricultural and Food Chemistry, 55, 6169–6176.

    Article  CAS  PubMed  Google Scholar 

  • Heuer, B., & Pessarakli, M. (1999). Handbook of plant and crop stress (pp. 675–695). New York: Marcel Dekker Inc.

    Book  Google Scholar 

  • Högy, P., Poll, C., Marhan, S., Kandeler, E., & Fangmeier, A. (2013). Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chemistry, 136(3–4), 1470–1477.

    Article  PubMed  Google Scholar 

  • Huang, C. Y., Roessner, U., Eickmeier, I., Genc, Y., Callahan, D. L., Shirley, N., et al. (2008). Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiology, 49(5), 691–703.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson, J. V., Hanson, A. D., & Chandler, P. C. (1986). Water stress enhances expression of an α-amylase gen in barley leaves. Plant Physiology, 80, 350–359.

    Article  Google Scholar 

  • Kamal-Eldin, A., Appelqvist, L. A., Yousif, G., & Iskander, G. M. (1992). Seed lipids of Sesamum indicum and related wild species in Sudan. The sterols. Journal of the Science of Food and Agriculture 59, 327–334.

    Article  CAS  Google Scholar 

  • Kausar, R., Arshad, M., Shahzad, A., & Komatsu, S. (2013). Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids, 44(2), 345–359.

    Article  CAS  PubMed  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21(8), 1635–1638.

    Article  CAS  PubMed  Google Scholar 

  • Nam, K.-H., Kim, D.-Y., Shin, H. J., Nam, K. J., An, J. H., Pack, I.-S., et al. (2013). Drought stress-induced compositional changes in tolerant transgenic rice and its wild type. Food Chemistry, 153, 145–150.

    Article  PubMed  Google Scholar 

  • Ozturk, Z. N., Talam, V., Deyholos, M., Michalowski, C. B., Galbraith, D. W., Gozukirmizi, N., et al. (2002). Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology 48, 551–573.

    Article  CAS  Google Scholar 

  • Pearson, J., & Stewart, G. (1990). Free proline and prolamin protein in the grain of three barley varieties subjected to a gradient of water supply. Journal of Experimental Botany, 41(226), 515–519.

    Article  CAS  Google Scholar 

  • Raj, K., & Chinoy, J. (1980). Effect of drought on sugar content of barley grown under two photoperiods. Agrochimica, 24(2–3), 108–112.

    CAS  Google Scholar 

  • Rodziewicz, P., Swarcewisz, B., Chmielewska, K., Wojakowska, A., & Stobiecki, M. (2014). Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum, 36, 1–19.

    Article  CAS  Google Scholar 

  • Roessner, U., Patterson, J. H., Forbes, M. G., Fincher, G. B., Langridge, P., & Bacic, A. (2006). An investigation of boron toxicity in barley using metabolomics. Plant Physiology, 142(3), 1087–1101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Röhlig, R. M., Eder, J., & Engel, K.-H. (2009). Metabolite profiling of maize grain: Differentiation due to genetics and environment. Metabolomics, 5(4), 459–477.

    Article  Google Scholar 

  • Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany, 64(11), 3201–3212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez, D. H., Schwabe, F., Erban, A., Udvardi, M. K., & Kopka, J. (2012). Comparative metabolomics of drought acclimation in model and forage legumes. Plant, Cell and Environment, 35(1), 136–149.

    Article  CAS  PubMed  Google Scholar 

  • Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10, 296–302.

    Article  CAS  PubMed  Google Scholar 

  • Semel, Y., Schauer, N., Roessner, U., Zamir, D., & Fernie, A. R. (2007). Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Metabolomics, 3(3), 289–295.

    Article  CAS  Google Scholar 

  • Shanker, A., Maheswari, M., Yadav, S. K., Desai, S., Bhanu, D., Attal, N. B., et al. (2014). Drought stress responses in crops. Functional and Integrative Genomics, 14(1), 11–22.

  • Sicher, R. C., Timlin, D., & Bailey, B. (2012). Responses of growth and primary metabolism of water-stressed barley roots to rehydration. Journal of Plant Physiology 169, 686–695.

    Article  CAS  PubMed  Google Scholar 

  • Silvente, S., Sobolev, A. P., Lara, M., & Yang, H. (2012). Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS ONE, 7(6), 1–11.

    Article  Google Scholar 

  • Singh, T., Aspinall, D., & Paleg, L. G. (1972). Proline acculmulation and varietal adaptability to drought in barleys: A potential metabolic measure of drought resistance. Nature New Biology, 236, 188–190.

    Article  CAS  PubMed  Google Scholar 

  • Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., et al. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 29(4), 417–426.

    Article  CAS  PubMed  Google Scholar 

  • Widodo, J. H. P, Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60(14), 4089–4103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wendelboe-Nelson, C., & Morris, P. C. (2012). Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics, 12(22), 3374–3385.

    Article  CAS  PubMed  Google Scholar 

  • Wendland, M., Diepolder, M., & Capriel, P. (2012). Leitfaden für die Düngung von Acker- und Grünland (10th edn). Freising: Bavarian State Research Center for Agriculture (LfL)

    Google Scholar 

  • Xu, Z., & Godber, J. S. (1999). Purification and identification of components of γ-oryzanol in rice bran oil. Journal of Agriculture and Food Chemistry, 47(7), 2724–2728.

    Article  CAS  Google Scholar 

  • Zúñgia, G. E., Fernandez, J., Cristi, R., Alberdi, M., & Corcuera, L. J. (1990). Lipid changes in barley seedlings subjected to water and cold stress. Phytochemistry, 29(10), 3087–3090.

    Article  Google Scholar 

Download references

Acknowledgments

Oxana Fastowski is gratefully acknowledged for technical support. We thank Hannes Petermeier und Stephan Haug, Lehrstuhl für Mathematische Statistik, Technische Universität München, for statistical consulting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Engel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenzel, A., Frank, T., Reichenberger, G. et al. Impact of induced drought stress on the metabolite profiles of barley grain. Metabolomics 11, 454–467 (2015). https://doi.org/10.1007/s11306-014-0708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0708-0

Keywords

Navigation