Abstract
Non-obese diabetic (NOD) mice are a widely-used model of type 1 diabetes (T1D). However, not all animals develop overt diabetes. This study examined the circulating metabolomic profiles of NOD mice progressing or not progressing to T1D. Total beta-cell mass was quantified in the intact pancreas using transgenic NOD mice expressing green fluorescent protein under the control of mouse insulin I promoter. While both progressor and non-progressor animals displayed lymphocyte infiltration and endoplasmic reticulum stress in the pancreas tissue, overt T1D did not develop until animals lost ~70 % of the total beta-cell mass. Gas chromatography time of flight mass spectrometry was used to measure >470 circulating metabolites in male and female progressor and non-progressor animals (n = 76) across a wide range of ages (neonates to >40-week). Statistical and multivariate analyses were used to identify age and sex independent metabolic markers which best differentiated progressor and non-progressor animals’ metabolic profiles. Key T1D-associated perturbations were related with: (1) increased plasma glucose and reduced 1,5-anhydroglucitol markers of glycemic control; (2) increased allantoin, gluconic acid and nitric acid-derived saccharic acid markers of oxidative stress; (3) reduced lysine, an insulin secretagogue; (4) increased branched-chain amino acids, isoleucine and valine; (5) reduced unsaturated fatty acids including arachidonic acid; and (6) perturbations in urea cycle intermediates suggesting increased arginine-dependent NO synthesis. Together these findings highlight the strength of the unique approach of comparing progressor and non-progressor NOD mice to identify metabolic perturbations involved in T1D progression.
Similar content being viewed by others
References
Adeva, M. M., Calvino, J., Souto, G., & Donapetry, C. (2012). Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids, 43, 171–181.
Akirav, E., Kushner, J. A., & Herold, K. C. (2008). Beta-cell mass and type 1 diabetes: Going, going, gone? Diabetes, 57, 2883–2888.
Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase: An overview. Biotechnology Advances, 27, 489–501.
Barupal, D. K., Haldiya, P. K., Wohlgemuth, G., Kind, T., Kothari, S. L., Pinkerton, K. E., et al. (2012). MetaMapp: Mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics, 13, 99.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological, 57, 289–300.
Bolton, E. E., Chen, J., Kim, S., Han, L., He, S., Shi, W., et al. (2011). PubChem3D: A new resource for scientists. Journal of Cheminformatics, 3, 32.
Castelo, R., & Roverato, A. (2009). Reverse engineering molecular regulatory networks from microarray data with qp-graphs. Journal of Computational Biology, 16, 213–227.
Chen, M., Yang, Z. D., Smith, K. M., Carter, J. D., & Nadler, J. L. (2005). Activation of 12-lipoxygenase in proinflammatory cytokine-mediated beta cell toxicity. Diabetologia, 48, 486–495.
Davidson, M. B., & Schriger, D. L. (2010). Effect of age and race/ethnicity on HbA1c levels in people without known diabetes mellitus: implications for the diagnosis of diabetes. Diabetes Research and Clinical Practice, 87, 415–421.
Dutta, T., Chai, H. S., Ward, L. E., Ghosh, A., Persson, X. M., Ford, G. C., et al. (2012). Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes. Diabetes, 61, 1004–1016.
Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludäscher & L. Raschid (Eds.), Lecture Notes in Computer Science (Vol. 3615, pp. 224–239)., Data integration in the life sciences Berlin Heidelberg: Springer.
Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee do, Y., Lu, Y., et al. (2008). Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant Journal, 53, 691–704.
Gianani, R., Campbell-Thompson, M., Sarkar, S. A., Wasserfall, C., Pugliese, A., Solis, J. M., et al. (2010). Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia, 53, 690–698.
Grapov, D., Adams, S. H., Pedersen, T. L., Garvey, W. T., & Newman, J. W. (2012). Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One, 7, e48852.
Heitmeier, M. R., Kelly, C. B., Ensor, N. J., Gibson, K. A., Mullis, K. G., Corbett, J. A., et al. (2004). Role of cyclooxygenase-2 in cytokine-induced beta-cell dysfunction and damage by isolated rat and human islets. Journal of Biological Chemistry, 279, 53145–53151.
Holohan, C., Szegezdi, E., Ritter, T., O’Brien, T., & Samali, A. (2008). Cytokine-induced beta-cell apoptosis is NO-dependent, mitochondria-mediated and inhibited by BCL-XL. Journal of Cellular and Molecular Medicine, 12, 591–606.
Jo, J., Kilimnik, G., Kim, A., Guo, C., Periwal, V., & Hara, M. (2011). Formation of pancreatic islets involves coordinated expansion of small islets and fission of large interconnected islet-like structures. Biophysical Journal, 101, 565–574.
Juraschek, S. P., Steffes, M. W., Miller, E. R, 3rd, & Selvin, E. (2012). Alternative markers of hyperglycemia and risk of diabetes. Diabetes Care, 35, 2265–2270.
Kacheva, S., Lenzen, S., & Gurgul-Convey, E. (2011). Differential effects of proinflammatory cytokines on cell death and ER stress in insulin-secreting INS1E cells and the involvement of nitric oxide. Cytokine, 55, 195–201.
Kalogeropoulou, D., LaFave, L., Schweim, K., Gannon, M. C., & Nuttall, F. Q. (2009). Lysine ingestion markedly attenuates the glucose response to ingested glucose without a change in insulin response. American Journal of Clinical Nutrition, 90, 314–320.
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(Database issue), D109–D114.
Kawasaki, H., Hori, T., Nakajima, M., & Takeshita, K. (1988). Plasma levels of pipecolic acid in patients with chronic liver disease. Hepatology, 8, 286–289.
Kilimnik, G., Jo, J., Periwal, V., Zielinski, M. C., & Hara, M. (2012). Quantification of islet size and architecture. Islets, 4, 167–172.
Kilimnik, G., Kim, A., Jo, J., Miller, K., & Hara, M. (2009). Quantification of pancreatic islet distribution in situ in mice. American Journal of Physiology - Endocrinology and Metabolism, 297, E1331–E1338.
Kim, A., Miller, K., Jo, J., Kilimnik, G., Wojcik, P., & Hara, M. (2009). Islet architecture: A comparative study. Islets, 1, 129–136.
Kolb, H., & Kolb-Bachofen, V. (1992). Type 1 (insulin-dependent) diabetes mellitus and nitric oxide. Diabetologia, 35, 796–797.
Lanza, I. R., Zhang, S., Ward, L. E., Karakelides, H., Raftery, D., & Nair, K. S. (2010). Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One, 5, e10538.
Lebastchi, J., & Herold, K. C. (2012). Immunologic and metabolic biomarkers of beta-cell destruction in the diagnosis of type 1 diabetes. Cold Spring Harbor Perspectives in Medicine, 2, a007708.
Liu, Z., Jeppesen, P. B., Gregersen, S., Chen, X., & Hermansen, K. (2008). Dose- and glucose-dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal INS-1E beta-cells. Review of Diabetic Studies, 5, 232–244.
Lu, J., Zhou, J., Bao, Y., Chen, T., Zhang, Y., Zhao, A., et al. (2012). Serum metabolic signatures of fulminant type 1 diabetes. Journal of Proteome Research, 11, 4705–4711.
Madsen, R., Banday, V. S., Moritz, T., Trygg, J., & Lejon, K. (2012). Altered metabolic signature in pre-diabetic NOD mice. PLoS One, 7, e35445.
Maritim, A. C., Sanders, R. A., & Watkins, J. B, 3rd. (2003). Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17, 24–38.
McKillop, A. M., & Flatt, P. R. (2011). Emerging applications of metabolomic and genomic profiling in diabetic clinical medicine. Diabetes Care, 34, 2624–2630.
Meier, J. J., Bhushan, A., Butler, A. E., Rizza, R. A., & Butler, P. C. (2005). Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: Indirect evidence for islet regeneration? Diabetologia, 48, 2221–2228.
Miller, K., Kim, A., Kilimnik, G., Jo, J., Moka, U., Periwal, V., et al. (2009). Islet formation during the neonatal development in mice. PLoS One, 4, e7739.
Mori, M. (2007). Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. Journal of Nutrition, 137, 1616S–1620S.
Nakagawa, Y., & Ishii, E. (1996). Changes in arachidonic acid metabolism and the aggregation of polymorphonuclear leukocytes in rats with streptozotocin-induced diabetes. Biochimica et Biophysica Acta, 1315, 145–151.
Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15, 606–614.
Nokoff, N., & Rewers, M. (2013). Pathogenesis of type 1 diabetes: Lessons from natural history studies of high-risk individuals. Annals of the New York Academy of Sciences, 1281, 1–15.
Oresic, M., Seppanen-Laakso, T., Sun, D., Tang, J., Therman, S., Viehman, R., et al. (2012). Phospholipids and insulin resistance in psychosis: A lipidomics study of twin pairs discordant for schizophrenia. Genome Medicine, 4, 1.
Oresic, M., Simell, S., Sysi-Aho, M., Nanto-Salonen, K., Seppanen-Laakso, T., Parikka, V., et al. (2008). Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. Journal of Experimental Medicine, 205, 2975–2984.
Oyadomari, S., Takeda, K., Takiguchi, M., Gotoh, T., Matsumoto, M., Wada, I., et al. (2001). Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proceedings of the National Academy of Sciences USA, 98, 10845–10850.
Palermo, G., Piraino, P., & Zucht, H. D. (2009). Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data. Advances and Applications in Bioinformatics and Chemistry, 2, 57–70.
Parazzoli, S., Harmon, J. S., Vallerie, S. N., Zhang, T., Zhou, H., & Robertson, R. P. (2012). Cyclooxygenase-2, not microsomal prostaglandin E synthase-1, is the mechanism for interleukin-1beta-induced prostaglandin E2 production and inhibition of insulin secretion in pancreatic islets. Journal of Biological Chemistry, 287, 32246–32253.
Pflueger, M., Seppanen-Laakso, T., Suortti, T., Hyotylainen, T., Achenbach, P., Bonifacio, E., et al. (2011). Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes, 60, 2740–2747.
R Development Core Team. R: A language and environment for statistical computing. (2011). R Foundation for Statistical Computing, ISBN 3-900051-900007-900050.
Robinson, T. W., & Freedman, B. I. (2013). Assessing glycemic control in diabetic patients with severe nephropathy. Journal of Renal Nutrition, 23, 199–202.
Sampson, S. R., Bucris, E., Horovitz-Fried, M., Parnas, A., Kahana, S., Abitbol, G., et al. (2010). Insulin increases H2O2-induced pancreatic beta cell death. Apoptosis, 15, 1165–1176.
Scholz, M., & Fiehn, O. (2007). SetupX: A public study design database for metabolomic projects. Pacific Symposium on Biocomputing, 12, 169–180.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.
Smith, T. N., Hash, K., Davey, C. L., Mills, H., Williams, H., & Kiely, D. E. (2012). Modifications in the nitric acid oxidation of d-glucose. Carbohydrate Research, 350, 6–13.
Southern, C., Schulster, D., & Green, I. C. (1990). Inhibition of insulin secretion by interleukin-1 beta and tumour necrosis factor-alpha via an l-arginine-dependent nitric oxide generating mechanism. FEBS Letters, 276, 42–44.
Standards of medical care in diabetes 2013. (2013). Diabetes Care, 36, S11.
Stojanovic, V., & Ihle, S. (2011). Role of beta-hydroxybutyric acid in diabetic ketoacidosis: A review. Canadian Veterinary Journal, 52, 426–430.
Strimmer, K. (2008). fdrtool: A versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24, 1461–1462.
Svensson, O., Kourti, T., & MacGregor, J. F. (2002). An investigation of orthogonal signal correction algorithms and their characteristics. Journal of Chemometrics, 16, 176–188.
Sysi-Aho, M., Ermolov, A., Gopalacharyulu, P. V., Tripathi, A., Seppanen-Laakso, T., Maukonen, J., et al. (2011). Metabolic regulation in progression to autoimmune diabetes. PLoS Computational Biology, 7, e1002257.
Tran, P. O., Gleason, C. E., & Robertson, R. P. (2002). Inhibition of interleukin-1beta-induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet beta-cell function. Diabetes, 51, 1772–1778.
Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.
Wiklund, S., Johansson, E., Sjostrom, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80, 115–122.
Ziemer, D. C., Kolm, P., Weintraub, W. S., Vaccarino, V., Rhee, M. K., Twombly, J. G., et al. (2010). Glucose-independent, black-white differences in hemoglobin A1c levels: A cross-sectional analysis of 2 studies. Annals of Internal Medicine, 152, 770–777.
Acknowledgments
The study is supported as a pilot project by the West Coast Metabolomics Center,US Public Health Service Grant DK097154 (to OF); DK-020595 to the University of Chicago Diabetes Research and Training Center (Animal Models Core), DK-072473, AG-042151, and a gift from the Kovler Family Foundation (to MH); and the Intramural research program of the NIH, NIDDK (to VP). The authors thank Mrs. German Kilimnik, Billy Zhao and Mark Zielinski, and Drs. Xioajun Wang and Ryosuke Misawa at the University of Chicagofor the technical assistance.
Conflict of interest
No potential conflicts of interest relevant to this article were reported.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dmitry Grapov and Johannes Fahrmann have contributed equally to this work.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Grapov, D., Fahrmann, J., Hwang, J. et al. Diabetes associated metabolomic perturbations in NOD mice. Metabolomics 11, 425–437 (2015). https://doi.org/10.1007/s11306-014-0706-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11306-014-0706-2