, Volume 11, Issue 2, pp 425–437 | Cite as

Diabetes associated metabolomic perturbations in NOD mice

  • Dmitry Grapov
  • Johannes Fahrmann
  • Jessica Hwang
  • Ananta Poudel
  • Junghyo Jo
  • Vipul Periwal
  • Oliver Fiehn
  • Manami HaraEmail author
Original Article


Non-obese diabetic (NOD) mice are a widely-used model of type 1 diabetes (T1D). However, not all animals develop overt diabetes. This study examined the circulating metabolomic profiles of NOD mice progressing or not progressing to T1D. Total beta-cell mass was quantified in the intact pancreas using transgenic NOD mice expressing green fluorescent protein under the control of mouse insulin I promoter. While both progressor and non-progressor animals displayed lymphocyte infiltration and endoplasmic reticulum stress in the pancreas tissue, overt T1D did not develop until animals lost ~70 % of the total beta-cell mass. Gas chromatography time of flight mass spectrometry was used to measure >470 circulating metabolites in male and female progressor and non-progressor animals (n = 76) across a wide range of ages (neonates to >40-week). Statistical and multivariate analyses were used to identify age and sex independent metabolic markers which best differentiated progressor and non-progressor animals’ metabolic profiles. Key T1D-associated perturbations were related with: (1) increased plasma glucose and reduced 1,5-anhydroglucitol markers of glycemic control; (2) increased allantoin, gluconic acid and nitric acid-derived saccharic acid markers of oxidative stress; (3) reduced lysine, an insulin secretagogue; (4) increased branched-chain amino acids, isoleucine and valine; (5) reduced unsaturated fatty acids including arachidonic acid; and (6) perturbations in urea cycle intermediates suggesting increased arginine-dependent NO synthesis. Together these findings highlight the strength of the unique approach of comparing progressor and non-progressor NOD mice to identify metabolic perturbations involved in T1D progression.


Type 1 diabetes Pancreatic beta-cells Beta-cell loss Metabolomics 



The study is supported as a pilot project by the West Coast Metabolomics Center,US Public Health Service Grant DK097154 (to OF); DK-020595 to the University of Chicago Diabetes Research and Training Center (Animal Models Core), DK-072473, AG-042151, and a gift from the Kovler Family Foundation (to MH); and the Intramural research program of the NIH, NIDDK (to VP). The authors thank Mrs. German Kilimnik, Billy Zhao and Mark Zielinski, and Drs. Xioajun Wang and Ryosuke Misawa at the University of Chicagofor the technical assistance.

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Supplementary material

11306_2014_706_MOESM1_ESM.docx (102 kb)
Supplementary material 1 (DOCX 101 kb)


  1. Adeva, M. M., Calvino, J., Souto, G., & Donapetry, C. (2012). Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids, 43, 171–181.CrossRefPubMedGoogle Scholar
  2. Akirav, E., Kushner, J. A., & Herold, K. C. (2008). Beta-cell mass and type 1 diabetes: Going, going, gone? Diabetes, 57, 2883–2888.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase: An overview. Biotechnology Advances, 27, 489–501.CrossRefPubMedGoogle Scholar
  4. Barupal, D. K., Haldiya, P. K., Wohlgemuth, G., Kind, T., Kothari, S. L., Pinkerton, K. E., et al. (2012). MetaMapp: Mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics, 13, 99.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological, 57, 289–300.Google Scholar
  6. Bolton, E. E., Chen, J., Kim, S., Han, L., He, S., Shi, W., et al. (2011). PubChem3D: A new resource for scientists. Journal of Cheminformatics, 3, 32.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Castelo, R., & Roverato, A. (2009). Reverse engineering molecular regulatory networks from microarray data with qp-graphs. Journal of Computational Biology, 16, 213–227.CrossRefPubMedGoogle Scholar
  8. Chen, M., Yang, Z. D., Smith, K. M., Carter, J. D., & Nadler, J. L. (2005). Activation of 12-lipoxygenase in proinflammatory cytokine-mediated beta cell toxicity. Diabetologia, 48, 486–495.CrossRefPubMedGoogle Scholar
  9. Davidson, M. B., & Schriger, D. L. (2010). Effect of age and race/ethnicity on HbA1c levels in people without known diabetes mellitus: implications for the diagnosis of diabetes. Diabetes Research and Clinical Practice, 87, 415–421.CrossRefPubMedGoogle Scholar
  10. Dutta, T., Chai, H. S., Ward, L. E., Ghosh, A., Persson, X. M., Ford, G. C., et al. (2012). Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes. Diabetes, 61, 1004–1016.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludäscher & L. Raschid (Eds.), Lecture Notes in Computer Science (Vol. 3615, pp. 224–239)., Data integration in the life sciences Berlin Heidelberg: Springer.Google Scholar
  12. Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee do, Y., Lu, Y., et al. (2008). Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant Journal, 53, 691–704.CrossRefPubMedGoogle Scholar
  13. Gianani, R., Campbell-Thompson, M., Sarkar, S. A., Wasserfall, C., Pugliese, A., Solis, J. M., et al. (2010). Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia, 53, 690–698.CrossRefPubMedGoogle Scholar
  14. Grapov, D., Adams, S. H., Pedersen, T. L., Garvey, W. T., & Newman, J. W. (2012). Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One, 7, e48852.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Heitmeier, M. R., Kelly, C. B., Ensor, N. J., Gibson, K. A., Mullis, K. G., Corbett, J. A., et al. (2004). Role of cyclooxygenase-2 in cytokine-induced beta-cell dysfunction and damage by isolated rat and human islets. Journal of Biological Chemistry, 279, 53145–53151.CrossRefPubMedGoogle Scholar
  16. Holohan, C., Szegezdi, E., Ritter, T., O’Brien, T., & Samali, A. (2008). Cytokine-induced beta-cell apoptosis is NO-dependent, mitochondria-mediated and inhibited by BCL-XL. Journal of Cellular and Molecular Medicine, 12, 591–606.CrossRefPubMedGoogle Scholar
  17. Jo, J., Kilimnik, G., Kim, A., Guo, C., Periwal, V., & Hara, M. (2011). Formation of pancreatic islets involves coordinated expansion of small islets and fission of large interconnected islet-like structures. Biophysical Journal, 101, 565–574.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Juraschek, S. P., Steffes, M. W., Miller, E. R, 3rd, & Selvin, E. (2012). Alternative markers of hyperglycemia and risk of diabetes. Diabetes Care, 35, 2265–2270.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Kacheva, S., Lenzen, S., & Gurgul-Convey, E. (2011). Differential effects of proinflammatory cytokines on cell death and ER stress in insulin-secreting INS1E cells and the involvement of nitric oxide. Cytokine, 55, 195–201.CrossRefPubMedGoogle Scholar
  20. Kalogeropoulou, D., LaFave, L., Schweim, K., Gannon, M. C., & Nuttall, F. Q. (2009). Lysine ingestion markedly attenuates the glucose response to ingested glucose without a change in insulin response. American Journal of Clinical Nutrition, 90, 314–320.CrossRefPubMedGoogle Scholar
  21. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(Database issue), D109–D114.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Kawasaki, H., Hori, T., Nakajima, M., & Takeshita, K. (1988). Plasma levels of pipecolic acid in patients with chronic liver disease. Hepatology, 8, 286–289.CrossRefPubMedGoogle Scholar
  23. Kilimnik, G., Jo, J., Periwal, V., Zielinski, M. C., & Hara, M. (2012). Quantification of islet size and architecture. Islets, 4, 167–172.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kilimnik, G., Kim, A., Jo, J., Miller, K., & Hara, M. (2009). Quantification of pancreatic islet distribution in situ in mice. American Journal of Physiology - Endocrinology and Metabolism, 297, E1331–E1338.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kim, A., Miller, K., Jo, J., Kilimnik, G., Wojcik, P., & Hara, M. (2009). Islet architecture: A comparative study. Islets, 1, 129–136.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Kolb, H., & Kolb-Bachofen, V. (1992). Type 1 (insulin-dependent) diabetes mellitus and nitric oxide. Diabetologia, 35, 796–797.PubMedGoogle Scholar
  27. Lanza, I. R., Zhang, S., Ward, L. E., Karakelides, H., Raftery, D., & Nair, K. S. (2010). Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One, 5, e10538.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Lebastchi, J., & Herold, K. C. (2012). Immunologic and metabolic biomarkers of beta-cell destruction in the diagnosis of type 1 diabetes. Cold Spring Harbor Perspectives in Medicine, 2, a007708.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Liu, Z., Jeppesen, P. B., Gregersen, S., Chen, X., & Hermansen, K. (2008). Dose- and glucose-dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal INS-1E beta-cells. Review of Diabetic Studies, 5, 232–244.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Lu, J., Zhou, J., Bao, Y., Chen, T., Zhang, Y., Zhao, A., et al. (2012). Serum metabolic signatures of fulminant type 1 diabetes. Journal of Proteome Research, 11, 4705–4711.CrossRefPubMedGoogle Scholar
  31. Madsen, R., Banday, V. S., Moritz, T., Trygg, J., & Lejon, K. (2012). Altered metabolic signature in pre-diabetic NOD mice. PLoS One, 7, e35445.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Maritim, A. C., Sanders, R. A., & Watkins, J. B, 3rd. (2003). Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17, 24–38.CrossRefPubMedGoogle Scholar
  33. McKillop, A. M., & Flatt, P. R. (2011). Emerging applications of metabolomic and genomic profiling in diabetic clinical medicine. Diabetes Care, 34, 2624–2630.CrossRefPubMedCentralPubMedGoogle Scholar
  34. Meier, J. J., Bhushan, A., Butler, A. E., Rizza, R. A., & Butler, P. C. (2005). Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: Indirect evidence for islet regeneration? Diabetologia, 48, 2221–2228.CrossRefPubMedGoogle Scholar
  35. Miller, K., Kim, A., Kilimnik, G., Jo, J., Moka, U., Periwal, V., et al. (2009). Islet formation during the neonatal development in mice. PLoS One, 4, e7739.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Mori, M. (2007). Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. Journal of Nutrition, 137, 1616S–1620S.PubMedGoogle Scholar
  37. Nakagawa, Y., & Ishii, E. (1996). Changes in arachidonic acid metabolism and the aggregation of polymorphonuclear leukocytes in rats with streptozotocin-induced diabetes. Biochimica et Biophysica Acta, 1315, 145–151.CrossRefPubMedGoogle Scholar
  38. Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15, 606–614.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Nokoff, N., & Rewers, M. (2013). Pathogenesis of type 1 diabetes: Lessons from natural history studies of high-risk individuals. Annals of the New York Academy of Sciences, 1281, 1–15.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Oresic, M., Seppanen-Laakso, T., Sun, D., Tang, J., Therman, S., Viehman, R., et al. (2012). Phospholipids and insulin resistance in psychosis: A lipidomics study of twin pairs discordant for schizophrenia. Genome Medicine, 4, 1.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Oresic, M., Simell, S., Sysi-Aho, M., Nanto-Salonen, K., Seppanen-Laakso, T., Parikka, V., et al. (2008). Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. Journal of Experimental Medicine, 205, 2975–2984.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Oyadomari, S., Takeda, K., Takiguchi, M., Gotoh, T., Matsumoto, M., Wada, I., et al. (2001). Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proceedings of the National Academy of Sciences USA, 98, 10845–10850.CrossRefGoogle Scholar
  43. Palermo, G., Piraino, P., & Zucht, H. D. (2009). Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data. Advances and Applications in Bioinformatics and Chemistry, 2, 57–70.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Parazzoli, S., Harmon, J. S., Vallerie, S. N., Zhang, T., Zhou, H., & Robertson, R. P. (2012). Cyclooxygenase-2, not microsomal prostaglandin E synthase-1, is the mechanism for interleukin-1beta-induced prostaglandin E2 production and inhibition of insulin secretion in pancreatic islets. Journal of Biological Chemistry, 287, 32246–32253.CrossRefPubMedCentralPubMedGoogle Scholar
  45. Pflueger, M., Seppanen-Laakso, T., Suortti, T., Hyotylainen, T., Achenbach, P., Bonifacio, E., et al. (2011). Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes, 60, 2740–2747.CrossRefPubMedCentralPubMedGoogle Scholar
  46. R Development Core Team. R: A language and environment for statistical computing. (2011). R Foundation for Statistical Computing, ISBN 3-900051-900007-900050.Google Scholar
  47. Robinson, T. W., & Freedman, B. I. (2013). Assessing glycemic control in diabetic patients with severe nephropathy. Journal of Renal Nutrition, 23, 199–202.CrossRefPubMedGoogle Scholar
  48. Sampson, S. R., Bucris, E., Horovitz-Fried, M., Parnas, A., Kahana, S., Abitbol, G., et al. (2010). Insulin increases H2O2-induced pancreatic beta cell death. Apoptosis, 15, 1165–1176.CrossRefPubMedGoogle Scholar
  49. Scholz, M., & Fiehn, O. (2007). SetupX: A public study design database for metabolomic projects. Pacific Symposium on Biocomputing, 12, 169–180.Google Scholar
  50. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.CrossRefPubMedCentralPubMedGoogle Scholar
  51. Smith, T. N., Hash, K., Davey, C. L., Mills, H., Williams, H., & Kiely, D. E. (2012). Modifications in the nitric acid oxidation of d-glucose. Carbohydrate Research, 350, 6–13.CrossRefPubMedGoogle Scholar
  52. Southern, C., Schulster, D., & Green, I. C. (1990). Inhibition of insulin secretion by interleukin-1 beta and tumour necrosis factor-alpha via an l-arginine-dependent nitric oxide generating mechanism. FEBS Letters, 276, 42–44.CrossRefPubMedGoogle Scholar
  53. Standards of medical care in diabetes 2013. (2013). Diabetes Care, 36, S11.CrossRefGoogle Scholar
  54. Stojanovic, V., & Ihle, S. (2011). Role of beta-hydroxybutyric acid in diabetic ketoacidosis: A review. Canadian Veterinary Journal, 52, 426–430.Google Scholar
  55. Strimmer, K. (2008). fdrtool: A versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24, 1461–1462.CrossRefPubMedGoogle Scholar
  56. Svensson, O., Kourti, T., & MacGregor, J. F. (2002). An investigation of orthogonal signal correction algorithms and their characteristics. Journal of Chemometrics, 16, 176–188.CrossRefGoogle Scholar
  57. Sysi-Aho, M., Ermolov, A., Gopalacharyulu, P. V., Tripathi, A., Seppanen-Laakso, T., Maukonen, J., et al. (2011). Metabolic regulation in progression to autoimmune diabetes. PLoS Computational Biology, 7, e1002257.CrossRefPubMedCentralPubMedGoogle Scholar
  58. Tran, P. O., Gleason, C. E., & Robertson, R. P. (2002). Inhibition of interleukin-1beta-induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet beta-cell function. Diabetes, 51, 1772–1778.CrossRefPubMedGoogle Scholar
  59. Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.CrossRefPubMedCentralPubMedGoogle Scholar
  60. Wiklund, S., Johansson, E., Sjostrom, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80, 115–122.CrossRefPubMedGoogle Scholar
  61. Ziemer, D. C., Kolm, P., Weintraub, W. S., Vaccarino, V., Rhee, M. K., Twombly, J. G., et al. (2010). Glucose-independent, black-white differences in hemoglobin A1c levels: A cross-sectional analysis of 2 studies. Annals of Internal Medicine, 152, 770–777.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dmitry Grapov
    • 1
  • Johannes Fahrmann
    • 1
  • Jessica Hwang
    • 2
  • Ananta Poudel
    • 2
  • Junghyo Jo
    • 3
    • 4
  • Vipul Periwal
    • 3
  • Oliver Fiehn
    • 1
  • Manami Hara
    • 2
    Email author
  1. 1.NIH West Coast Metabolomics CenterUniversity of California DavisDavisUSA
  2. 2.Department of MedicineThe University of ChicagoChicagoUSA
  3. 3.Laboratory of Biological ModelingNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA
  4. 4.Asia Pacific Center for Theoretical PhysicsPohangKorea

Personalised recommendations