Abstract
The anti-malarial drug artesunate possesses anti-inflammatory and anti-oxidative actions in experimental asthma, comparable to corticosteroid. We hypothesized that artesunate may modulate disease-relevant metabolic alterations in allergic asthma. To explore metabolic profile changes induced by artesunate in allergic airway inflammation, we analysed bronchoalveolar lavage fluid (BALF) and serum from naïve and ovalbumin-induced asthma mice treated with artesunate, using both gas and liquid chromatography-mass spectrometry metabolomics. Pharmacokinetics analyses of serum and lung tissues revealed that artesunate is rapidly converted into the active metabolite dihydroartemisinin. Artesunate effectively suppressed BALF total and differential counts, and repressed BALF Th2 cytokines, IL-17, IL-12(p40), MCP-1 and G-CSF levels. Artesunate had no effects on both BALF and serum metabolome in naïve mice. Artesunate promoted restoration of BALF sterols (cholesterol, cholic acid and cortol), phosphatidylcholines and carbohydrates (arabinose, mannose and galactose) and of serum 18-oxocortisol, galactose, glucose and glucouronic acid in asthma. Artesunate prevented OVA-induced increases in pro-inflammatory metabolites from arginine–proline metabolic pathway, particularly BALF levels of urea and alanine and serum levels of urea, proline, valine and homoserine. Multiple statistical correlation analyses revealed association between altered BALF and serum metabolites and inflammatory cytokines. Dexamethasone failed to reduce urea level and caused widespread changes in metabolites irrelevant to asthma development. Here we report the first metabolome profile of artesunate treatment in experimental asthma. Artesunate restored specific metabolic perturbations in airway inflammation, which correlated well with its anti-inflammatory actions. Our metabolomics findings further strengthen the therapeutic value of using artesunate to treat allergic asthma.
This is a preview of subscription content,
to check access.





Similar content being viewed by others
References
Barbul, A. (2008). Proline precursors to sustain mammalian collagen synthesis. Journal of Nutrition, 138(10), 2021S–2024S.
Cheng, C., Ho, W. E., Goh, F. Y., Guan, S. P., Kong, L. R., Lai, W. Q., et al. (2011). Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway. PLoS ONE, 6(6), e20932.
Cheng, C., Ng, D. S., Chan, T. K., Guan, S. P., Ho, W. E., Koh, A. H., et al. (2013). Anti-allergic action of anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models. Allergy, 68(2), 195–203.
Dai, C. L., Yao, X. L., Keeran, K. J., Zywicke, G. J., Qu, X., Yu, Z. X., et al. (2012). Apolipoprotein A-I attenuates ovalbumin-induced neutrophilic airway inflammation via a granulocyte colony-stimulating factor-dependent mechanism. American Journal of Respiratory Cell and Molecular Biology, 47(2), 186–195.
Fessler, M. B., Massing, M. W., Spruell, B., Jaramillo, R., Draper, D. W., Madenspacher, J. H., et al. (2009). Novel relationship of serum cholesterol with asthma and wheeze in the United States. Journal of Allergy and Clinical Immunology, 124(5), 967–974.
Ho, W. E., Cheng, C., Peh, H. Y., Xu, F., Tannenbaum, S. R., Ong, C. N., et al. (2012). Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radical Biology & Medicine, 53(3), 498–507.
Ho, W. E., Peh, H. Y., Chan, T. K., & Wong, W. S. F. (2014a). Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacology & Therapeutics, 142(1), 126–139.
Ho, W. E., Xu, Y.-J., Cheng, C., Peh, H. Y., Tannenbaum, S. R., Wong, W. S. F., et al. (2014b). Metabolomics reveals inflammatory-linked pulmonary metabolic alterations in a murine model of house dust mite-induced allergic asthma. Journal of Proteome Research. doi:10.1021/pr5003615.
Ho, W. E., Xu, Y. J., Xu, F., Cheng, C., Peh, H. Y., Tannenbaum, S. R., et al. (2013). Metabolomics reveals altered metabolic pathways in experimental asthma. American Journal of Respiratory Cell and Molecular Biology, 48(2), 204–211.
Huang, Y.-S., Huang, W.-C., Li, C.-W., & Chuang, L.-T. (2011). Eicosadienoic acid differentially modulates production of pro-inflammatory modulators in murine macrophages. Molecular and Cellular Biochemistry, 358(1–2), 85–94.
Jiang, W., Li, B., Zheng, X., Liu, X., Cen, Y., Li, J., et al. (2011). Artesunate in combination with oxacillin protect sepsis model mice challenged with lethal live methicillin-resistant Staphylococcus aureus (MRSA) via its inhibition on proinflammatory cytokines release and enhancement on antibacterial activity of oxacillin. International Immunopharmacology, 11(8), 1065–1073.
Jin, O., Zhang, H., Gu, Z., Zhao, S., Xu, T., Zhou, K., et al. (2009). A pilot study of the therapeutic efficacy and mechanism of artesunate in the MRL/lpr murine model of systemic lupus erythematosus. Cellular & Molecular Immunology, 6(6), 461–467.
Jung, J., Kim, S.-H., Lee, H.-S., Choi, G. S., Jung, Y.-S., Ryu, D. H., et al. (2013). Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clinical and Experimental Allergy, 43(4), 425–433.
Lara, A., Khatri, S. B., Wang, Z., Comhair, S. A., Xu, W., Dweik, R. A., et al. (2008). Alterations of the arginine metabolome in asthma. American Journal of Respiratory and Critical Care Medicine, 178(7), 673–681.
Li, B., Li, J., Pan, X., Ding, G., Cao, H., Jiang, W., et al. (2010). Artesunate protects sepsis model mice challenged with Staphylococcus aureus by decreasing TNF-alpha release via inhibition TLR2 and Nod2 mRNA expressions and transcription factor NF-kappaB activation. International Immunopharmacology, 10(3), 344–350.
Li, Y., Wang, S., Wang, Y., Zhou, C., Chen, G., Shen, W., et al. (2013). Inhibitory effect of the antimalarial agent artesunate on collagen-induced arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. Translational Research, 161(2), 89–98.
Marescau, B., De Deyn, P. P., Lowenthal, A., Qureshi, I. A., Antonozzi, I., Bachmann, C., et al. (1990). Guanidino compound analysis as a complementary diagnostic parameter for hyperargininemia: Follow-up of guanidino compound levels during therapy. Pediatric Research, 27(3), 297–303.
Mattarucchi, E., Baraldi, E., & Guillou, C. (2012). Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites. Biomedical Chromatography, 26(1), 89–94.
Mehta, A. K., Arora, N., Gaur, S. N., & Singh, B. P. (2009). Choline supplementation reduces oxidative stress in mouse model of allergic airway disease. European Journal of Clinical Investigation, 39(10), 934–941.
Mehta, A. K., Singh, B. P., Arora, N., & Gaur, S. N. (2010). Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma. Immunobiology, 215(7), 527–534.
Meurs, H., McKay, S., Maarsingh, H., Hamer, M. A. M., Macic, L., Molendijk, N., et al. (2002). Increased arginase activity underlies allergen-induced deficiency of cNOS-derived nitric oxide and airway hyperresponsiveness. British Journal of Pharmacology, 136(3), 391–398.
Meyts, I., Hellings, P. W., Hens, G., Vanaudenaerde, B. M., Verbinnen, B., Heremans, H., et al. (2006). IL-12 contributes to allergen-induced airway inflammation in experimental asthma. Journal of Immunology, 177(9), 6460–6470.
Mirshafiey, A., Saadat, F., Attar, M., Di Paola, R., Sedaghat, R., & Cuzzocrea, S. (2006). Design of a new line in treatment of experimental rheumatoid arthritis by artesunate. Immunopharmacology and Immunotoxicology, 28(3), 397–410.
Morris, C. A., Duparc, S., Borghini-Fuhrer, I., Jung, D., Shin, C. S., & Fleckenstein, L. (2011). Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malaria Journal, 10, 263.
Newton, P., Suputtamongkol, Y., Teja-Isavadharm, P., Pukrittayakamee, S., Navaratnam, V., Bates, I., et al. (2000). Antimalarial bioavailability and disposition of artesunate in acute falciparum malaria. Antimicrobial Agents and Chemotherapy, 44(4), 972–977.
Ng, D. P. K., Salim, A., Liu, Y., Zou, L., Xu, F. G., Huang, S., et al. (2012). A metabolomic study of low estimated GFR in non-proteinuric type 2 diabetes mellitus. Diabetologia, 55(2), 499–508.
Peebles, R. S., Togias, A., Bickel, C. A., Diemer, F. B., Hubbard, W. C., & Schleimer, R. P. (2000). Endogenous glucocorticoids and antigen-induced acute and late phase pulmonary responses. Clinical and Experimental Allergy, 30(9), 1257–1265.
Peters, M., Kauth, M., Scherner, O., Gehlhar, K., Steffen, I., Wentker, P., et al. (2010). Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. Journal of Allergy and Clinical Immunology, 126(3), 648–656.
Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. doi:10.1186/1471-2105-11-395.
Ried, J. S., Baurecht, H., Stuckler, F., Krumsiek, J., Gieger, C., Heinrich, J., et al. (2013). Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma. Allergy, 68(5), 629–636.
Saude, E. J., Obiefuna, I. P., Somorjai, R. L., Ajamian, F., Skappak, C., Ahmad, T., et al. (2009). Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. American Journal of Respiratory and Critical Care Medicine, 179(1), 25–34.
Saude, E. J., Skappak, C. D., Regush, S., Cook, K., Ben-Zvi, A., Becker, A., et al. (2011). Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. Journal of Allergy and Clinical Immunology, 127(3), 757–764 e, 751–756.
Sell, D. R., Strauch, C. M., Shen, W., & Monnier, V. M. (2007). 2-Aminoadipic acid is a marker of protein carbonyl oxidation in the aging human skin: Effects of diabetes, renal failure and sepsis. Biochemical Journal, 404, 269–277.
Serrano-Mollar, A., & Closa, D. (2005). Arachidonic acid signaling in pathogenesis of allergy: Therapeutic implications. Current Drug Targets—Inflammation & Allergy, 4(2), 151–155.
Smith, C. B., & Sun, Y. (1995). Influence of valine flooding on channeling of valine into tissue pools and on protein synthesis. American Journal of Physiology, 268(4 Pt 1), E735–E744.
Tan, S. S. L., Ong, B., Cheng, C., Ho, W. E., Tam, J. K. C., Stewart, A. G., et al. (2013). The antimalarial drug artesunate inhibits primary human cultured airway smooth muscle cell proliferation. American Journal of Respiratory Cell and Molecular Biology, 50(2), 451–458.
Teja-Isavadharm, P., Watt, G., Eamsila, C., Jongsakul, K., Li, Q., Keeratithakul, G., et al. (2001). Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. American Journal of Tropical Medicine and Hygiene, 65(6), 717–721.
Weber, N., Richter, K.-D., Schulte, E., & Mukherjee, K. D. (1995). Petroselinic acid from dietary triacylglycerols reduces the concentration of arachidonic acid in tissue lipids of rats. Journal of Nutrition, 125(6), 1563–1568.
Weeda, E., de Kort, C. A. D., & Beenakkers, A. M. T. (1980). Oxidation of proline and pyruvate by flight muscle mitochondria of the Colorado beetle, Leptinotarsa decemlineata say. Insect Biochemistry, 10(3), 305–311.
Wright, S. M., Hockey, P. M., Enhorning, G., Strong, P., Reid, K. B. M., Holgate, S. T., et al. (2000). Altered airway surfactant phospholipid composition and reduced lung function in asthma. Journal of Applied Physiology, 89(4), 1283–1292.
Xu, Y.-J., Wang, C., Ho, W. E., & Ong, C. N. (2014). Recent developments and applications of metabolomics in microbiological investigations. TrAC Trends in Analytical Chemistry, 56, 37–48.
Xu, X. L., Xie, Q. M., Shen, Y. H., Jiang, J. J., Chen, Y. Y., Yao, H. Y., et al. (2008). Mannose prevents lipopolysaccharide-induced acute lung injury in rats. Inflammation Research, 57(3), 104–110.
Xu, F. G., Zou, L., & Ong, C. N. (2009). Multiorigination of chromatographic peaks in derivatized GC/MS metabolomics: A confounder that influences metabolic pathway interpretation. Journal of Proteome Research, 8(12), 5657–5665.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Wanxing Eugene Ho and Yong-Jiang Xu have contributed equally to this work.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ho, W.E., Xu, YJ., Xu, F. et al. Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma. Metabolomics 11, 380–390 (2015). https://doi.org/10.1007/s11306-014-0699-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11306-014-0699-x