Anderssen, E., Dyrstad, K., Westad, F., & Martens, H. (2006). Reducing over-optimism in variable selection by cross-model validation. Chemometrics and Intelligent Laboratory Systems,
84(1–2), 69–74.
Article
CAS
Google Scholar
Bro, R., & Smilde, A. K. (2003). Centering and scaling in component analysis. Journal of Chemometrics,
17(1), 16–33.
Article
CAS
Google Scholar
Centner, V., Massart, D. L., de Noord, O. E., De Jong, S., Vandeginste, B. M., & Sterna, C. (1996). Elimination of uninformative variables for multivariate calibration. Analytical Chemistry,
68(21), 3851–3858.
Article
CAS
PubMed
Google Scholar
Chun, H., & Keles, S. (2009). Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. Genetics,
182(1), 79–90.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chun, H., & Keles, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society Series B,
72(1), 3–25.
Article
Google Scholar
Chung, D., & Keles, S. (2010). Sparse partial least squares classification for high dimensional data. Statistical Applications in Genetics and Molecular Biology,
9(1), 39.
Article
Google Scholar
Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta,
185(C), 1–17.
Article
CAS
Google Scholar
Gidskehaug, L., Anderssen, E., & Alsberg, B. K. (2006). Cross model validated feature selection based on gene clusters. Chemometrics and Intelligent Laboratory Systems,
84(1–2), 172–176.
Article
CAS
Google Scholar
Goodacre, R., Broadhurst, D., Smilde, A. K., Kristal, B. S., Baker, J. D., Beger, R., et al. (2007). Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics,
3(3), 231–241.
Article
CAS
Google Scholar
Hassani, S., Martens, H., Qannari, E. M., Hanafi, M., Borge, G. I., & Kohler, A. (2010). Analysis of -omics data: Graphical interpretation- and validation tools in multi-block methods. Chemometrics and Intelligent Laboratory Systems,
104(1), 140–153.
Article
CAS
Google Scholar
Hassani, S., Martens, H., Qannari, E. M., Hanafi, M., & Kohler, A. (2012). Model validation and error estimation in multi-block partial least squares regression. Chemometrics and Intelligent Laboratory Systems,
117, 42–53.
Article
CAS
Google Scholar
Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics,
2(3), 211–228.
Article
Google Scholar
Höskuldsson, A. (2001). Variable and subset selection in PLS regression. Chemometrics and Intelligent Laboratory Systems,
55(1–2), 23–38.
Article
Google Scholar
Indahl, U. (2005). A twist to partial least squares regression. Journal of Chemometrics,
19(1), 32–44.
Article
CAS
Google Scholar
Karaman, I., Qannari, E. M., Martens, H., Hedemann, M. S., Knudsen, K. E. B., & Kohler, A. (2013). Comparison of sparse and Jack-knife partial least squares regression methods for variable selection. Chemometrics and Intelligent Laboratory Systems,
122, 66–77.
Article
Google Scholar
Kemsley, E. K., Le Gall, G., Dainty, J. R., Watson, A. D., Harvey, L. J., Tapp, H. S., et al. (2007). Multivariate techniques and their application in nutrition: A metabolomics case study. British Journal of Nutrition,
98(1), 1–14.
Article
CAS
PubMed
Google Scholar
Kohler, A., Hanafi, M., Bertrand, D., Qannari, E. M., Janbu, A. O., Møretrø, T., et al. (2008). Interpreting several types of measurements in bioscience. In P. Lasch & J. Kneipp (Eds.), Biomedical vibrational spectroscopy (pp. 333–356). Hoboken, NJ: Wiley.
Chapter
Google Scholar
Lê Cao, K. A., Martin, P. G. P., Robert-Granié, C., & Besse, P. (2009). Sparse canonical methods for biological data integration: Application to a cross-platform study. BMC Bioinformatics,
10, 34.
Article
PubMed Central
PubMed
Google Scholar
Lê Cao, K. A., Rossouw, D., Robert-Granié, C., & Besse, P. (2008). A sparse PLS for variable selection when integrating omics data. Statistical Applications in Genetics and Molecular Biology,
7(1), 109.
Article
Google Scholar
Löfstedt, T., & Trygg, J. (2011). OnPLS: A novel multiblock method for the modelling of predictive and orthogonal variation. Journal of Chemometrics,
25, 441–455.
Google Scholar
Lopes, J. A., Menezes, J. C., Westerhuis, J. A., & Smilde, A. K. (2002). Multiblock PLS analysis of an industrial pharmaceutical process. Biotechnology and Bioengineering,
80(4), 419–427.
Article
CAS
PubMed
Google Scholar
Martens, H., & Martens, M. (2000). Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference,
11(1–2), 5–16.
Article
Google Scholar
Martens, H., & Næs, T. (1992). Multivariate calibration. Chichester: Wiley.
Google Scholar
Mehmood, T., Liland, K. H., Snipen, L., & Sæbø, S. (2012). A review of variable selection methods in partial least squares regression. Chemometrics and Intelligent Laboratory Systems,
118, 62–69.
Article
CAS
Google Scholar
Moyon, T., Le Marec, F., Qannari, E., Vigneau, E., Le Plain, A., Courant, F., et al. (2012). Statistical strategies for relating metabolomics and proteomics data: a real case study in nutrition research area. Metabolomics,
8(6), 1090–1101.
Article
CAS
Google Scholar
Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., & Engelsen, S. B. (2000). Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy,
54(3), 413–419.
Article
Google Scholar
Nørskov, N., Hedemann, M., Theil, P., & Knudsen, K. (2013). Oxylipins discriminate between whole grain wheat and wheat aleurone intake: A metabolomics study on pig plasma. Metabolomics,
9(2), 464–479.
Article
Google Scholar
Ottestad, I., Hassani, S., Borge, G. I., Kohler, A., Vogt, G., Hyötyläinen, T., et al. (2012). Fish oil supplementation alters the plasma lipidomic profile and increases long-chain PUFAs of phospholipids and triglycerides in healthy subjects. PLoS ONE,
7(8), e42550.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics,
11, 395.
Article
PubMed Central
PubMed
Google Scholar
Rosipal, R., & Krämer, N. (2006). Overview and recent advances in partial least squares. In C. Saunders, M. Grobelnik, S. Gunn, & J. Shawe-Taylor (Eds.), Subspace, latent structure and feature selection (pp. 34–51). Berlin: Springer.
Chapter
Google Scholar
Shen, H., & Huang, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation. Journal of Multivariate Analysis,
99(6), 1015–1034.
Article
Google Scholar
Smilde, A. K., van der Werf, M. J., Bijlsma, S., van der Werff-van der Vat, B. J., & Jellema, R. H. (2005). Fusion of mass spectrometry-based metabolomics data. Analytical Chemistry, 77(20), 6729–6736.
Szymaríska, E., Saccenti, E., Smilde, A., & Westerhuis, J. (2012). Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics,
8(1), 3–16.
Article
Google Scholar
Theil, P. K., Jørgensen, H., Serena, A., Hendrickson, J., & Bach Knudsen, K. E. (2011). Products deriving from microbial fermentation are linked to insulinaemic response in pigs fed breads prepared from whole-wheat grain and wheat and rye ingredients. British Journal of Nutrition,
105(03), 373–383.
Article
CAS
PubMed
Google Scholar
Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research,
6(2), 469–479.
Article
CAS
PubMed
Google Scholar
Urban Hjort, J. S. (1993). Computer intensive statistical methods. London: Chapman and Hall.
Google Scholar
van der Greef, J., & Smilde, A. K. (2005). Symbiosis of chemometrics and metabolomics: Past, present, and future. Journal of Chemometrics,
19(5–7), 376–386.
Article
Google Scholar
Wangen, L. E., & Kowalski, B. R. (1989). A multiblock partial least squares algorithm for investigating complex chemical systems. Journal of Chemometrics,
3(1), 3–20.
Article
Google Scholar
Wegelin, J. (2000). A survey of partial least squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle.
Westad, F., & Martens, H. (2000). Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. Journal of Near Infrared Spectroscopy,
8(2), 117–124.
Article
CAS
Google Scholar
Westerhuis, J. A., Kourti, T., & Macgregor, J. F. (1998). Analysis of multiblock and hierarchical PCA and PLS models. Journal of Chemometrics,
12(5), 301–321.
Article
CAS
Google Scholar
Westerhuis, J. A., & Smilde, A. K. (2001). Deflation in multiblock PLS. Journal of Chemometrics,
15(5), 485–493.
Article
CAS
Google Scholar
Wishart, D. S. (2010). Computational approaches to metabolomics. In R. Matthiesen (Ed.), Bioinformatics Methods in Clinical Research, Methods in Molecular Biology (Vol. 593, pp. 283–313). New York, NY: Humana Press.
Chapter
Google Scholar
Wold, S., Kettaneh, N., & Tjessem, K. (1996). Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection. Journal of Chemometrics,
10(5–6), 463–482.
Article
CAS
Google Scholar
Wold, S., Martens, H., & Wold, H. (1983). The multivariate calibration problem in chemistry solved by the PLS method. In B. Kågström & A. Ruhe (Eds.), Matrix pencils (pp. 286–293). Berlin: Springer.
Google Scholar
Xu, Y., & Goodacre, R. (2012). Multiblock principal component analysis: An efficient tool for analyzing metabolomics data which contain two influential factors. Metabolomics,
8(1), 37–51.
Article
CAS
Google Scholar
Yde, C. C., Jansen, J. J., Theil, P. K., Bertram, H. C., & Knudsen, K. E. B. (2012). Different metabolic and absorption patterns of betaine in response to dietary intake of whole-wheat grain, wheat aleurone or rye aleurone in catheterized pigs. European Food Research and Technology,
235(5), 939–949.
Article
CAS
Google Scholar