Metabolomics

, Volume 11, Issue 2, pp 350–366 | Cite as

Parasitoid venom induces metabolic cascades in fly hosts

  • Mrinalini
  • Aisha L. Siebert
  • Jeremy Wright
  • Ellen Martinson
  • David Wheeler
  • John H. Werren
Original Article

Abstract

Parasitoid wasps inject insect hosts with a cocktail of venoms to manipulate the physiology, development, and immunity of the hosts and to promote development of the parasitoid offspring. The jewel wasp Nasonia vitripennis is a model parasitoid with at least 79 venom proteins. We conducted a high-throughput analysis of Nasonia venom effects on temporal changes of 249 metabolites in pupae of the flesh fly host (Sarcophaga bullata), over a 5-day time course. Our results show that venom does not simply arrest the metabolism of the fly host. Rather, it targets specific metabolic processes while keeping hosts alive for at least 5 days post venom injection by the wasp. We found that venom: (a) activates the sorbitol biosynthetic pathway while maintaining stable glucose levels, (b) causes a shift in intermediary metabolism by switching to anaerobic metabolism and blocking the tricarboxylic acid cycle, (c) arrests chitin biosynthesis that likely reflects developmental arrest of adult fly structures, (d) elevates the majority of free amino acids, and (e) may be increasing phospholipid degradation. Despite sharing some metabolic effects with cold treatment, diapause, and hypoxia, the venom response is distinct from these conditions. Because Nasonia venom dramatically increases sorbitol levels without changing glucose levels, it could be a useful model for studying the regulation of the sorbitol pathway, which is relevant to diabetes research. Our findings generally support the view that parasitoid venoms are a rich source of bioactive molecules with potential biomedical applications.

Keywords

Venom Nasonia Sorbitol Anaerobic respiration Chitin Amino acids 

Supplementary material

11306_2014_697_MOESM1_ESM.jpg (140 kb)
Supplementary material 1 (JPEG 140 kb)
11306_2014_697_MOESM2_ESM.jpg (986 kb)
Supplementary material 2 (JPEG 986 kb)
11306_2014_697_MOESM3_ESM.jpg (222 kb)
Supplementary material 3 (JPEG 222 kb)
11306_2014_697_MOESM4_ESM.jpg (323 kb)
Supplementary material 4 (JPEG 322 kb)
11306_2014_697_MOESM5_ESM.jpg (2.1 mb)
Supplementary material 5 (JPEG 2192 kb)
11306_2014_697_MOESM6_ESM.jpg (390 kb)
Supplementary material 6 (JPEG 389 kb)
11306_2014_697_MOESM7_ESM.docx (106 kb)
Supplementary material 7 (DOCX 106 kb)
11306_2014_697_MOESM8_ESM.docx (30 kb)
Supplementary material 8 (DOCX 30 kb)
11306_2014_697_MOESM9_ESM.docx (18 kb)
Supplementary material 9 (DOCX 19 kb)

References

  1. Agrell, I. (1953). The aerobic and anaerobic utilization of metabolic energy during insect metamorphosis. Acta Physiologica Scandinavica, 28, 306–335.CrossRefPubMedGoogle Scholar
  2. Andersen, S. O. (2010). Insect cuticular sclerotization: A review. Insect Biochemistry and Molecular Biology, 40, 166–178.CrossRefPubMedGoogle Scholar
  3. Asgari, S., & Rivers, D. B. (2011). Venom proteins from endoparasitoid wasps and their role in host–parasite interactions. Annual Review of Entomology, 56, 313–335.CrossRefPubMedGoogle Scholar
  4. Asgari, S., Zhang, G. M., Zareie, R., & Schmidt, O. (2003). A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochemistry and Molecular Biology, 33, 1017–1024.CrossRefPubMedGoogle Scholar
  5. Beckage, N. E., & Gelman, D. B. (2004). Wasp parasitoid disruption of host development: Implications for new biologically based strategies for insect control. Annual Review of Entomology, 49, 299–330.CrossRefPubMedGoogle Scholar
  6. Bruns, M. E. H., & Philipps, G. R. (1970). Action of venom phosphodiesterase on aminoacyl-trna from Escherichia coli. Biochimica et Biophysica Acta, 217, 189–191.CrossRefPubMedGoogle Scholar
  7. Caraux, G., & Pinloche, S. (2005). PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21, 1280–1281.CrossRefPubMedGoogle Scholar
  8. Chandrasekar, R., Jae, S. S., & Krishnan, M. (2008). Expression and localization of storage protein 1 (SP1) in differentiated fat body tissues of red hairy caterpillar, Amsacta albistriga walker. Archives of Insect Biochemistry and Physiology, 69, 70–84.CrossRefPubMedGoogle Scholar
  9. Clark, M. S., & Worland, M. R. (2008). How insects survive the cold: Molecular mechanisms—A review. Journal of Comparative Physiology B, 178, 917–933.CrossRefGoogle Scholar
  10. Cloutier, C. (1986). Amino-acid utilization in the aphid Acyrthosiphon pisum infected by the parasitoid Aphidius smithi. Journal of Insect Physiology, 32, 263–267.CrossRefGoogle Scholar
  11. Colinet, D., Mathe-Hubert, H., Allemand, R., Gatti, J.-L., & Poirie, M. (2013). Variability of venom components in immune suppressive parasitoid wasps: From a phylogenetic to a population approach. Journal of Insect Physiology, 59, 205–212.CrossRefPubMedGoogle Scholar
  12. Dahiya, N., Tewari, R., & Hoondal, G. S. (1999). Biotechnological aspects of chitinolytic enzymes: A review. Applied Microbiology and Biotechnology, 71, 773–782.CrossRefGoogle Scholar
  13. Dahlman, D. L., Rana, R. L., Schepers, E. J., Schepers, T., Diluna, F. A., & Webb, B. A. (2003). A teratocyte gene from a parasitic wasp that is associated with inhibition of insect growth and development inhibits host protein synthesis. Insect Molecular Biology, 12, 527–534.CrossRefPubMedGoogle Scholar
  14. Danks, H. V. (2000). Dehydration in dormant insects. Journal of Insect Physiology, 46, 837–852.CrossRefPubMedGoogle Scholar
  15. Danneels, E. L., Formesyn, E. M., Hahn, D. A., Denlinger, D. L., Cardoen, D., Wenseleers, T., et al. (2013). Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Insect Biochemistry and Molecular Biology, 43, 1189–1200.CrossRefPubMedGoogle Scholar
  16. Danneels, E. L., Rivers, D. B., & de Graaf, D. C. (2010). Venom proteins of the parasitoid wasp Nasonia vitripennis: Recent discovery of an untapped pharmacopee. Toxins, 2, 494–516.CrossRefPubMedCentralPubMedGoogle Scholar
  17. de Graaf, D. C., Aerts, M., Brunain, M., Desjardins, C. A., Jacobs, F. J., Werren, J. H., et al. (2010). Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Molecular Biology, 19, 11–26.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Delgado, T., Sanchez, E. L., Camarda, R., & Lagunoff, M. (2012). Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathogens, 8(8), e1002866.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Denlinger, D. L. (2002). Regulation of diapause. Annual Review of Entomology, 47, 93–122.CrossRefPubMedGoogle Scholar
  20. Doury, G., Rojasrousse, D., & Periquet, G. (1995). Ability of eupelmus-orientalis ectoparasitoid larvae to develop on an unparalysed host in the absence of female stinging behavior. Journal of Insect Physiology, 41, 287–296.CrossRefGoogle Scholar
  21. Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Science USA, 95, 14863–14868.CrossRefGoogle Scholar
  22. Er, A., Sak, O., Ergin, E., Uçkan, F., & Rivers, D. B. (2011). Venom-induced immunosuppression: An overview of hemocyte-mediated responses. Psyche, 2011, 1–14.CrossRefGoogle Scholar
  23. Feala, J. D., Coquin, L., McCulloch, A. D., & Paternostro, G. (2007). Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: Metabolomic and computational systems analysis. Molecular System Biology, 3, 99.CrossRefGoogle Scholar
  24. Fernie, A. R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., et al. (2011). Recommendations for reporting metabolite data. Plant Cell, 23, 2477–2482.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93, 137–188.CrossRefPubMedGoogle Scholar
  26. Fraenkel, G., & Hsiao, C. (1968). Manifestations of a pupal diapause in 2 species of flies Sarcophaga argyrostoma and S. bullata. Journal of Insect Physiology, 14, 689–705.CrossRefGoogle Scholar
  27. Gohel, V., Singh, A., Vimal, M., Ashwini, P., & Chhatpar, H. S. (2006). Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology, 5, 54–72.Google Scholar
  28. Hamada, Y., Kitoh, R., & Raskin, P. (1991). Crucial role of aldose reductase-activity and plasma-glucose level in sorbitol accumulation in erythrocytes from diabetic-patients. Diabetes, 40, 1233–1240.CrossRefPubMedGoogle Scholar
  29. Han, Q., Beerntsen, B. T., & Li, J. Y. (2007). The tryptophan oxidation pathway in mosquitoes with emphasis on xanthurenic acid biosynthesis. Journal of Insect Physiology, 53, 254–263.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Herrera-Estrella, A., & Chet, I. (1999). Chitinases in biological control. EXS, 87, 171–184.PubMedGoogle Scholar
  31. Horie, Y., Kanda, T., & Mochida, Y. (2000). Sorbitol as an arrester of embryonic development in diapausing eggs of the silkworm, Bombyx mori. Journal of Insect Physiology, 46, 1009–1016.CrossRefPubMedGoogle Scholar
  32. Hunt, J. H., Buck, N. A., & Wheeler, D. E. (2003). Storage proteins in vespid wasps: Characterization, developmental pattern, and occurrence in adults. Journal of Insect Physiology, 49, 785–794.CrossRefPubMedGoogle Scholar
  33. Iwata, K. I., Fujiwara, Y., & Takeda, M. (2005). Effects of temperature, sorbitol, alanine and diapause hormone on the embryonic development in Bombyx mori: In vitro tests of old hypotheses. Physiological Entomology, 30, 317–323.CrossRefGoogle Scholar
  34. Joplin, K. H., Yocum, G. D., & Denlinger, D. L. (1990). Cold shock elicits expression of heat-shock proteins in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 36, 825–834.CrossRefGoogle Scholar
  35. Kaeslin, M., Reinhard, M., Buehler, D., Roth, T., Pfister-Wilhelm, R., & Lanzrein, B. (2010). Venom of the egg-larval parasitoid Chelonus inanitus is a complex mixture and has multiple biological effects. Journal of Insect Physiology, 56, 686–694.CrossRefPubMedGoogle Scholar
  36. Kelly, T. J., Souza, A. L., Clish, C. B., & Puigserver, P. (2011). A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1 alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Molecular and Cellular Biology, 31, 2696–2706.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Krishnan, A., Nair, P. N., & Jones, D. (1994). Isolation, cloning, and characterization of new chitinase stored in active form in chitin-lined venom reservoir. Journal of Biological Chemistry, 269, 20971–20976.PubMedGoogle Scholar
  38. Linzen, B., & Schartau, W. (1974). A quantitative analysis of tryptophan metabolism during development of the blowfly Protophormia terrae-novae. Insect Biochemistry, 4, 325–340.CrossRefGoogle Scholar
  39. Lynch, J. A., & Desplan, C. (2006). A method for parental RNA interference in the wasp Nasonia vitripennis. Nature Protocols, 1, 486–494.CrossRefPubMedGoogle Scholar
  40. Mabiala-Moundoungou, A. D. N., Doury, G., Eslin, P., Cherqui, A., & Prevost, G. (2010). Deadly venom of Asobara japonica parasitoid needs ovarian antidote to regulate host physiology. Journal of Insect Physiology, 56, 35–41.CrossRefPubMedGoogle Scholar
  41. Merzendorfer, H., & Zimoch, L. (2003). Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology, 206, 4393–4412.CrossRefPubMedGoogle Scholar
  42. Michaud, M. R., & Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology B, 177, 753–763.CrossRefGoogle Scholar
  43. Moreau, S. J. M., & Guillot, S. (2005). Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochemistry and Molecular Biology, 35, 1209–1223.CrossRefPubMedGoogle Scholar
  44. Nation, J. L. (2008). Insect physiology and biochemistry. Boca Raton, FL: CRC Press.Google Scholar
  45. Nieman, D. C., Gillitt, N. D., Knab, A. M., Shanely, R. A., Pappan, K. L., Jin, F. X., et al. (2013). Influence of a polyphenol-enriched protein powder on exercise-induced inflammation and oxidative stress in athletes: A randomized trial using a metabolomics approach. PLoS ONE, 8(8), e72215.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Noguchi, H., & Hayakawa, Y. (1996). Mechanism of parasitism-induced elevation of dopamine levels in host insect larvae. Insect Biochemistry and Molecular Biology, 26, 659–665.CrossRefGoogle Scholar
  47. Noguchi, H., Hayakawa, Y., & Downer, R. G. H. (1995). Elevation of dopamine levels in parasitized insect larvae. Insect Biochemistry and Molecular Biology, 25, 197–201.CrossRefGoogle Scholar
  48. Parkinson, N., Smith, I., Weaver, R., & Edwards, J. P. (2001). A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochemistry and Molecular Biology, 31, 57–63.CrossRefPubMedGoogle Scholar
  49. Pennacchio, F., & Strand, M. R. (2006). Evolution of developmental strategies in parasitic hymenoptera. Annual Review of Entomology, 51, 233–258.CrossRefPubMedGoogle Scholar
  50. Petrova, M., Philippsen, P., & Zachau, H. G. (1975). Partial degradation of transfer-Rnas by different preparations of snake-venom exonuclease. Biochimica et Biophysica Acta, 395, 455–467.CrossRefPubMedGoogle Scholar
  51. Poulin, R. (2010). Parasite manipulation of host behavior: An update and frequently asked questions. Advances in the Study of Behaviour, 41, 151–186.CrossRefGoogle Scholar
  52. Raimundo, N., Baysal, B. E., & Shadel, G. S. (2011). Revisiting the TCA cycle: Signaling to tumor formation. Trends in Molecular Medicine, 17, 641–649.CrossRefPubMedCentralPubMedGoogle Scholar
  53. Rivers, D. B., Crawley, T., & Bauser, H. (2005). Localization of intracellular calcium release in cells injured by venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) and dependence of calcium mobilization on G-protein activation. Journal of Insect Physiology, 51, 149–160.CrossRefPubMedGoogle Scholar
  54. Rivers, D. B., & Denlinger, D. L. (1994a). Developmental fate of the flesh fly, Sarcophaga bullata, envenomated by the pupal ectoparasitoid, Nasonia vitripennis. Journal of Insect Physiology, 40, 121–127.CrossRefGoogle Scholar
  55. Rivers, D. B., & Denlinger, D. L. (1994b). Redirection of metabolism in the flesh fly, Sarcophaga bullata, following envenomation by the ectoparasitoid Nasonia vitripennis and correlations of metabolic effects with the diapause status of the host. Journal of Insect Physiology, 40, 207–215.CrossRefGoogle Scholar
  56. Rivers, D. B., & Denlinger, D. L. (1995a). Fecundity and development of the ectoparasitoid wasp Nasonia vitripennis are dependent on host quality. Entomologia Experimentalis et Applicata, 76, 15–24.CrossRefGoogle Scholar
  57. Rivers, D. B., & Denlinger, D. L. (1995b). Venom-induced alterations in fly lipid metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae). Journal of Invertebrate Pathology, 66, 104–110.CrossRefGoogle Scholar
  58. Rivers, D. B., Genco, M., & Sanchez, R. A. (1999). In vitro analysis of venom from the wasp Nasonia vitripennis: Susceptibility of different cell lines and venom-induced changes in plasma membrane permeability. In Vitro Cellular and Developmental Biology-Animal, 35, 102–110.CrossRefPubMedGoogle Scholar
  59. Rivers, D. B., Keefer, D. A., Egrin, E., & Uçkan, F. (2011). Morphology and ultrastructure of brain tissue and fat body from the flesh fly, Sarcophaga bullata Parker (Diptera: Sarcophagidae), envenomated by the ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Psyche, 2011, 1–10.CrossRefGoogle Scholar
  60. Rivers, D. B., Rocco, M. M., & Frayha, A. R. (2002). Venom from the ectoparasitic wasp Nasonia vitripennis increases Na+ influx and activates phospholipase C and phospholipase A(2) dependent signal transduction pathways in cultured insect cells. Toxicon, 40, 9–21.CrossRefPubMedGoogle Scholar
  61. Soller, M., & Lanzrein, B. (1996). Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induce developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae). Journal of Insect Physiology, 42, 471–481.CrossRefGoogle Scholar
  62. Strand, M. R., & Pech, L. L. (1995). Immunological basis for compatibility in parasitoid host relationships. Annual Review of Entomology, 40, 31–56.CrossRefPubMedGoogle Scholar
  63. Teets, N. M., Peyton, J. T., Ragland, G. J., Colinet, H., Renault, D., Hahn, D. A., et al. (2012). Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiological Genomics, 44, 764–777.CrossRefPubMedGoogle Scholar
  64. Thompson, S. N. (2001). Parasitism enhances the induction of glucogenesis by the insect, Manduca sexta L. International Journal of Biochemistry & Cell Biology, 33, 163–173.CrossRefGoogle Scholar
  65. Thompson, S. N., & Dahlman, D. L. (1998). Aberrant nutritional regulation of carbohydrate synthesis by parasitized Manduca sexta L. Journal of Insect Physiology, 44, 745–753.CrossRefPubMedGoogle Scholar
  66. Valdivieso, M. H., Durán, A., & Roncero, C. (1999). In P. J. A. R. Muzarelli (Ed.), Chitin and Chitinases (pp. 55–69). Basel: Birkhäuser Verlag.Google Scholar
  67. van den Bert, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7, 142.CrossRefGoogle Scholar
  68. Wan, Z.-W., Wang, H.-Y., & Chen, X–. X. (2006). Venom apparatus of the endoparasitoid wasp Opius caricivorae Fischer (Hymenoptera: Braconidae): Morphology and ultrastructure. Microscopy Research and Technique, 69, 820–825.CrossRefPubMedGoogle Scholar
  69. Wang, X., & Haunerland, N. H. (1993). Storage protein uptake in Helicoverpa zea. Purification of the very high density lipoprotein receptor from perivisceral fat body. Journal of Biological Chemistry, 268(22), 16673–16678.PubMedGoogle Scholar
  70. Werren, J. H., & Loehlin, D. W. (2009a). The parasitoid wasp Nasonia: An emerging model system with haploid male genetics. Cold Spring Harbour Protocols, 4(10), 1–10.Google Scholar
  71. Werren, J. H., & Loehlin, D. W. (2009b). Rearing Sarcophaga bullata fly hosts for Nasonia (parasitoid wasp). Cold Spring Harbour Protocols, 4(10), 1–4.Google Scholar
  72. Werren, J. H., Loehlin, D., & Giebel, J. D. (2009). Larval RNAi in Nasonia (Parasitoid Wasp). Cold Spring Harbour Protocols, 4(10), 1358–1361.Google Scholar
  73. Werren, J. H., Richards, S., Desjardins, C. A., Niehuis, O., Gadau, J., & Colbourne, J. K. (2010). Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 327, 343–348.CrossRefPubMedGoogle Scholar
  74. Wheeler, D. E., Tuchinskaya, I., Buck, N. A., & Tabashnik, B. E. (2000). Hexameric storage proteins during metamorphosis and egg production in the diamondback moth, Plutella xylostella (Lepidoptera). Journal of Insect Physiology, 46, 951–958.CrossRefPubMedGoogle Scholar
  75. Whiting, A. R. (1967). The biology of the parasitic wasp Mormoniella vitripennis [Nasonia brevicornis] (Walker). The Quarterly Review of Biology, 42, 333–406.CrossRefGoogle Scholar
  76. Xia, J. G., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–W133.CrossRefPubMedCentralPubMedGoogle Scholar
  77. Xia, J. G., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.CrossRefPubMedCentralPubMedGoogle Scholar
  78. Zhang, G. M., Lu, Z. Q., Jiang, H. B., & Asgari, S. (2004). Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochemistry and Molecular Biology, 34, 477–483.CrossRefPubMedGoogle Scholar
  79. Zhu, J.-Y., Ye, G.-Y., & Hu, C. (2008). Morphology and ultrastructure of the venom apparatus in the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Micron, 39, 926–933.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mrinalini
    • 1
  • Aisha L. Siebert
    • 2
  • Jeremy Wright
    • 3
  • Ellen Martinson
    • 1
  • David Wheeler
    • 4
  • John H. Werren
    • 1
  1. 1.Biology DepartmentUniversity of RochesterRochesterUSA
  2. 2.Translational Biomedical Science DepartmentUniversity of Rochester School of Medicine and DentistryRochesterUSA
  3. 3.Research and Collections DivisionNew York State MuseumAlbanyUSA
  4. 4.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations