, Volume 11, Issue 2, pp 312–322 | Cite as

Non-targeted metabolomics analysis of cardiac Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes

  • Ranjan Banerjee
  • Jun He
  • Carolyn Spaniel
  • Megan T. Quintana
  • Zhongjing Wang
  • James R. Bain
  • Christopher B. Newgard
  • Michael J. Muehlbauer
  • Monte S. Willis
Original Article


The muscle-specific ubiquitin ligases MuRF1, MuRF2, MuRF3 have been reported to have overlapping substrate specificities, interacting with each other as well as proteins involved in metabolism and cardiac function. In the heart, all three MuRF family proteins have proven critical to cardiac responses to ischemia and heart failure. The non-targeted metabolomics analysis of MuRF1−/−, MuRF2−/−, and MuRF3−/− hearts was initiated to investigate the hypothesis that MuRF1, MuRF2, and MuRF3 have a similarly altered metabolome, representing alterations in overlapping metabolic processes. Ventricular tissue was flash frozen and quantitatively analyzed by GC/MS using a library built upon the Fiehn GC/MS Metabolomics RTL Library. Non-targeted metabolomic analysis identified significant differences (via VIP statistical analysis) in taurine, myoinositol, and stearic acid for the three MuRF−/− phenotypes relative to their matched controls. Moreover, pathway enrichment analysis demonstrated that MuRF1−/− had significant changes in metabolite(s) involved in taurine metabolism and primary acid biosynthesis while MuRF2−/− had changes associated with ascorbic acid/aldarate metabolism (via VIP and t test analysis vs. sibling-matched wildtype controls). By identifying the functional metabolic consequences of MuRF1, MuRF2, and MuRF3 in the intact heart, non-targeted metabolomics analysis discovered common pathways functionally affected by cardiac MuRF family proteins in vivo. These novel metabolomics findings will aid in guiding the molecular studies delineating the mechanisms that MuRF family proteins regulate metabolic pathways. Understanding these mechanism is an important key to understanding MuRF family proteins’ protective effects on the heart during cardiac disease.


Cardiac Ubiquitin ligase Metabolomics Muscle Ring Finger-1 (MuRF1) MuRF2 MuRF3 



Ubiquitin ligase


Muscle ring finger-1(2,3)


Variable importance in projection


Principal components analysis


Partial least squares discriminant analysis



The authors would like to thank Tim Koves for his guidance and valuable discussion and suggestions for harvesting and preparing heart samples for metabolomics analysis. This work was supported by the National Institutes of Health (R01HL104129 to M.W.), a Jefferson-Pilot Corporation Fellowship (to M.W.), and the Fondation Leducq (to M.W.).

Conflict of interest

The authors report no conflicts of interest.

Supplementary material

11306_2014_695_MOESM1_ESM.eps (4.8 mb)
Supplementary material 1 (EPS 4889 kb)
11306_2014_695_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)
11306_2014_695_MOESM3_ESM.xlsx (53 kb)
Supplementary material 3 (XLSX 52 kb)
11306_2014_695_MOESM4_ESM.xlsx (29 kb)
Supplementary material 4 (XLSX 29 kb)
11306_2014_695_MOESM5_ESM.xlsx (76 kb)
Supplementary material 5 (XLSX 75 kb)


  1. Anderson, K. E., Dart, A. M., & Woodcock, E. A. (1995). Inositol phosphate release and metabolism during myocardial ischemia and reperfusion in rat heart. Circulation Research, 76, 261–268.CrossRefPubMedGoogle Scholar
  2. Azuma, J., et al. (1982). Taurine for treatment of congestive heart failure. International Journal of Cardiology, 2, 303–304.CrossRefPubMedGoogle Scholar
  3. Azuma, J., et al. (1983). Therapy of congestive heart failure with orally administered taurine. Clinical Therapeutics, 5, 398–408.PubMedGoogle Scholar
  4. Azuma, J., et al. (1985). Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clinical Cardiology, 8, 276–282.CrossRefPubMedGoogle Scholar
  5. Bain, J. R., Stevens, R. D., Wenner, B. R., Ilkayeva, O., Muoio, D. M., & Newgard, C. B. (2009). Metabolomics applied to diabetes research: Moving from information to knowledge. Diabetes, 58, 2429–2443. doi: 10.2337/db09-0580.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. Nature, 361, 315–325. doi: 10.1038/361315a0.CrossRefPubMedGoogle Scholar
  7. Bodine, S. C., et al. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294, 1704–1708. doi: 10.1126/science.1065874.CrossRefPubMedGoogle Scholar
  8. Centner, T., et al. (2001). Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. Journal of Molecular Biology, 306, 717–726. doi: 10.1006/jmbi.2001.4448.CrossRefPubMedGoogle Scholar
  9. Crass, M. F, 3rd, & Lombardini, J. B. (1977). Loss of cardiac muscle taurine after acute left ventricular ischemia. Life Sciences, 21, 951–958.CrossRefPubMedGoogle Scholar
  10. El Idrissi, A., Okeke, E., Yan, X., Sidime, F., & Neuwirth, L. S. (2013). Taurine regulation of blood pressure and vasoactivity. Advances in Experimental Medicine and Biology, 775, 407–425. doi: 10.1007/978-1-4614-6130-2_31.CrossRefPubMedGoogle Scholar
  11. Fiehn, O., et al. (2008). Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant journal, 53, 691–704. doi: 10.1111/j.1365-313X.2007.03387.x.CrossRefPubMedGoogle Scholar
  12. Fielitz, J., et al. (2007a). Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. The Journal of Clinical Investigation, 117, 2486–2495. doi: 10.1172/JCI32827.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Fielitz, J., et al. (2007b). Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proceedings of the National Academy of Sciences United States of America, 104, 4377–4382. doi: 10.1073/pnas.0611726104.CrossRefGoogle Scholar
  14. Frazier, D. M., et al. (2006). The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. Journal of Inherited Metabolic Disease, 29, 76–85. doi: 10.1007/s10545-006-0228-9.CrossRefPubMedGoogle Scholar
  15. Gonzalez-Loyola, A., & Barba, I. (2010). Mitochondrial metabolism revisited: A route to cardioprotection. Cardiovascular Research, 88, 209–210. doi: 10.1093/cvr/cvq258.CrossRefPubMedGoogle Scholar
  16. Guaiquil, V. H., Golde, D. W., Beckles, D. L., Mascareno, E. J., & Siddiqui, M. A. (2004). Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemic hearts. Free Radical Biology and Medicine, 37, 1419–1429. doi: 10.1016/j.freeradbiomed.2004.06.041.CrossRefPubMedGoogle Scholar
  17. Halket, J. M., Przyborowska, A., Stein, S. E., Mallard, W. G., Down, S., & Chalmers, R. A. (1999). Deconvolution gas chromatography/mass spectrometry of urinary organic acids–potential for pattern recognition and automated identification of metabolic disorders. Rapid Communications in Mass Spectrometry, 13, 279–284. doi: 10.1002/(SICI)1097-0231(19990228)13:4<279:AID-RCM478>3.0.CO;2-I.CrossRefPubMedGoogle Scholar
  18. Huang, J., et al. (2001). Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proceedings of the National Academy of Sciences United States of America, 98, 11720–11724. doi: 10.1073/pnas.171325998.CrossRefGoogle Scholar
  19. Huxtable, R., & Bressler, R. (1974). Taurine concentrations in congestive heart failure. Science, 184, 1187–1188.CrossRefPubMedGoogle Scholar
  20. Ito, T., Schaffer, S., & Azuma, J. (2014). The effect of taurine on chronic heart failure: Actions of taurine against catecholamine and angiotensin II. Amino Acids, 46, 111–119. doi: 10.1007/s00726-013-1507-z.CrossRefPubMedGoogle Scholar
  21. Kim, O. Y., Jung, Y. S., Cho, Y., Chung, J. H., Hwang, G. S., & Shin, M. J. (2013). Altered heart and kidney phospholipid fatty acid composition are associated with cardiac hypertrophy in hypertensive rats. Clinical Biochemistry, 46, 1111–1117. doi: 10.1016/j.clinbiochem.2013.04.008.CrossRefPubMedGoogle Scholar
  22. Kind, T., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048. doi: 10.1021/ac9019522.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmueller, E., et al. (2005). GMD@CSB.DB: The golm metabolome database. Bioinformatics, 21(8), 1635–1638.CrossRefPubMedGoogle Scholar
  24. Li, C., et al. (2005). Taurine may prevent diabetic rats from developing cardiomyopathy also by downregulating angiotensin II type2 receptor expression. Cardiovascular Drugs and Therapy, 19, 105–112. doi: 10.1007/s10557-005-0443-x.CrossRefPubMedGoogle Scholar
  25. Li, H. H., et al. (2011). The ubiquitin ligase MuRF1 protects against cardiac ischemia/reperfusion injury by its proteasome-dependent degradation of phospho-c-Jun. American Journal of Pathology, 178, 1043–1058. doi: 10.1016/j.ajpath.2010.11.049.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews, 90, 207–258. doi: 10.1152/physrev.00015.2009.CrossRefPubMedGoogle Scholar
  27. Lopaschuk, G. D., Wambolt, R. B., & Barr, R. L. (1993). An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. Journal of Pharmacology and Experimental Therapeutics, 264, 135–144.PubMedGoogle Scholar
  28. Mallard, W. G., Reed J. (1997). Automated Mass Spectral Deconvolution and Identification System: AMDIS User Guide. National Institute of Standards and Technology, US Department of Commerce iv, 58.
  29. McBroom, M. J., & Welty, J. D. (1977). Effects of taurine on heart calcium in the cardiomyopathic hamster. Journal of Molecular and Cellular Cardiology, 9, 853–858.CrossRefPubMedGoogle Scholar
  30. Nielsen, T. T., Stottrup, N. B., Lofgren, B., & Botker, H. E. (2011). Metabolic fingerprint of ischaemic cardioprotection: Importance of the malate-aspartate shuttle. Cardiovascular Research, 91, 382–391. doi: 10.1093/cvr/cvr051.CrossRefPubMedGoogle Scholar
  31. Ripps, H., & Shen, W. (2012). Review: Taurine: A “very essential” amino acid. Molecular Vision, 18, 2673–2686.PubMedCentralPubMedGoogle Scholar
  32. Rodrigo, R., Prieto, J. C., & Castillo, R. (2013). Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n-3 fatty acids: Molecular mechanisms and potential clinical applications. Clinical Science (Lond), 124, 1–15. doi: 10.1042/CS20110663.CrossRefGoogle Scholar
  33. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Technical advance: Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 23, 131–142.CrossRefPubMedGoogle Scholar
  34. Rupert, B. E., Segar, J. L., Schutte, B. C., & Scholz, T. D. (2000). Metabolic adaptation of the hypertrophied heart: Role of the malate/aspartate and alpha-glycerophosphate shuttles. Journal of Molecular and Cellular Cardiology, 32, 2287–2297. doi: 10.1006/jmcc.2000.1257.CrossRefPubMedGoogle Scholar
  35. Saddik, M., & Lopaschuk, G. D. (1992). Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. Journal of Biological Chemistry, 267, 3825–3831.PubMedGoogle Scholar
  36. Schaffer, S. W., Jong, C. J., Ramila, K. C., & Azuma, J. (2010). Physiological roles of taurine in heart and muscle. Journal of Biomedical Science, 17(Suppl 1), S2. doi: 10.1186/1423-0127-17-S1-S2.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Scholz, T. D., TenEyck, C. J., & Schutte, B. C. (2000). Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria. Journal of Molecular and Cellular Cardiology, 32, 1–10. doi: 10.1006/jmcc.1999.1047.CrossRefPubMedGoogle Scholar
  38. Schwaiger, M., et al. (1985). Retention and clearance of C-11 palmitic acid in ischemic and reperfused canine myocardium. Journal of the American College of Cardiology, 6, 311–320.CrossRefPubMedGoogle Scholar
  39. Sernov, L. N., Sokolova, O. A., & Gatsura, V. V. (1991). The antiacidotic and cardioprotective effects of fructose-1,6-diphosphate and dehydroascorbic acid. Farmakol Toksikol, 54, 24–26.PubMedGoogle Scholar
  40. Shekhawat, P. S., Matern, D., & Strauss, A. W. (2005). Fetal fatty acid oxidation disorders, their effect on maternal health and neonatal outcome: Impact of expanded newborn screening on their diagnosis and management. Pediatric Research, 57, 78R–86R. doi: 10.1203/01.PDR.0000159631.63843.3E.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Soukoulis, V., et al. (2009). Micronutrient deficiencies an unmet need in heart failure. Journal of the American College of Cardiology, 54, 1660–1673. doi: 10.1016/j.jacc.2009.08.012.CrossRefPubMedGoogle Scholar
  42. Stein, S. E. (1999). An integrated method for spectrum extraction and compound identification from GC/MS data. Journal of the American Society for Mass Spectrometry, 10(8), 770–781.CrossRefGoogle Scholar
  43. Stottrup, N. B., et al. (2010). Inhibition of the malate-aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection. Cardiovascular Research, 88, 257–266. doi: 10.1093/cvr/cvq205.CrossRefPubMedGoogle Scholar
  44. Styczynski, M. P., Moxley, J. F., Tong, L. V., Walther, J. L., Jensen, K. L., & Stephanopoulos, G. N. (2007). Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Analytical Chemistry, 79, 966–973. doi: 10.1021/ac0614846.CrossRefPubMedGoogle Scholar
  45. Takihara, K., et al. (1986). Beneficial effect of taurine in rabbits with chronic congestive heart failure. American Heart Journal, 112, 1278–1284.CrossRefPubMedGoogle Scholar
  46. Torabinejad, J., Donahue, J. L., Gunesekera, B. N., Allen-Daniels, M. J., & Gillaspy, G. E. (2009). VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiology, 150, 951–961. doi: 10.1104/pp.108.135129.CrossRefPubMedCentralPubMedGoogle Scholar
  47. Ueki, I., et al. (2011). Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. American Journal of Physiology-Endocrinology and Metabolism, 301, E668–E684. doi: 10.1152/ajpendo.00151.2011.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Willis, M. S., Ike, C., Li, L., Wang, D. Z., Glass, D. J., & Patterson, C. (2007). Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circulation Research, 100, 456–459. doi: 10.1161/01.RES.0000259559.48597.32.CrossRefPubMedCentralPubMedGoogle Scholar
  49. Willis, M. S., et al. (2009a). Muscle ring finger 1 mediates cardiac atrophy in vivo. American Journal of Physiology Heart and Circulatory Physiology, 296, H997–H1006. doi: 10.1152/ajpheart.00660.2008.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Willis, M. S., et al. (2009b). Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circulation Research, 105, 80–88. doi: 10.1161/CIRCRESAHA.109.194928.CrossRefPubMedCentralPubMedGoogle Scholar
  51. Willis, M. S., et al. (2014). Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochemistry and Function, 32, 39–50. doi: 10.1002/cbf.2969.CrossRefPubMedCentralPubMedGoogle Scholar
  52. Witt, C. C., Witt, S. H., Lerche, S., Labeit, D., Back, W., & Labeit, S. (2008). Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO Journal, 27, 350–360. doi: 10.1038/sj.emboj.7601952.CrossRefPubMedCentralPubMedGoogle Scholar
  53. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–W133. doi: 10.1093/nar/gks374.CrossRefPubMedCentralPubMedGoogle Scholar
  54. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660. doi: 10.1093/nar/gkp356.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ranjan Banerjee
    • 1
  • Jun He
    • 2
    • 3
  • Carolyn Spaniel
    • 3
  • Megan T. Quintana
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Zhongjing Wang
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • James R. Bain
    • 4
    • 5
  • Christopher B. Newgard
    • 4
    • 5
  • Michael J. Muehlbauer
    • 4
  • Monte S. Willis
    • 3
    • 6
  1. 1.University of North Carolina School of MedicineChapel HillUSA
  2. 2.General Hospital of Ningxia Medical UniversityYinchuanPeople’s Republic of China
  3. 3.Department of Pathology & Laboratory Medicine, McAllister Heart InstituteUniversity of North CarolinaChapel HillUSA
  4. 4.Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamUSA
  5. 5.Division of Endocrinology, Metabolism, and Nutrition, Department of MedicineDuke University Medical CenterDurhamUSA
  6. 6.McAllister Heart InstituteUniversity of North CarolinaChapel HillUSA

Personalised recommendations