, Volume 11, Issue 2, pp 251–260 | Cite as

Metabolite profiling of Clostridium difficile ribotypes using small molecular weight volatile organic compounds

  • S. Kuppusami
  • M. R. J. Clokie
  • T. Panayi
  • A. M. Ellis
  • P. S. MonksEmail author
Original Article


Volatile organic compounds (VOCs) emitted by cultures of ten different Clostridium difficile ribotypes have been profiled using proton transfer reaction-time of flight-mass spectrometry. A total of 69 VOCs were identified and combinations of these VOCs were found to be characteristic for each of the ribotypes. The VOC patterns, with the aid of a statistical analysis, have been shown to be useful in distinguishing different ribotypes. A tentative assignment of different masses also shows that different ribotypes have markedly different emissions of methanol, p-cresol, dimethylamine and a range sulfur compounds (ethylene sulfide, dimethylsulfide and methyl thioacetate), which point to VOCs as potential indicators of different metabolic pathways in virulent and less-virulent strains. The results establish the potential of detecting emitted VOC metabolites to differentiate between closely related C. difficile ribotypes and in the longer term provide metabolic insight into virulence.


Volatile organic compounds Clostridium difficile Ribotype 


  1. Barber, S., et al. (2012). Increased sensitivity in proton transfer reaction mass spectrometry by incorporation of a radio frequency ion funnel. Analytical Chemistry, 84, 5387–5391. doi: 10.1021/ac300894t.CrossRefPubMedGoogle Scholar
  2. Bartlett, J. G. (1990). Clostridium-difficile - Clinical considerations. Reviews of Infectious Diseases, 12, S243–S251.CrossRefPubMedGoogle Scholar
  3. Bauer, M. P., et al. (2011). Clostridium difficile infection in Europe: a hospital-based survey. Lancet, 377, 63–73. doi: 10.1016/s0140-6736(10)61266-4.CrossRefPubMedGoogle Scholar
  4. Berg, J. D., Mills, R. G., & Coleman, D. J. (1985). Improved Gas-Liquid-Chromatography Method for the indentification of clostridium-difficile. Journal of Clinical Pathology, 38, 108–110. doi: 10.1136/jcp.38.1.108.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Blake, R. S., Monks, P. S., & Ellis, A. M. (2009). Proton-Transfer Reaction Mass Spectrometry. Chemical Reviews, 109, 861–896. doi: 10.1021/Cr800364q.CrossRefPubMedGoogle Scholar
  6. Blake, R. S., Whyte, C., Hughes, C. O., Ellis, A. M., & Monks, P. S. (2004). Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Analytical Chemistry, 76, 3841–3845. doi: 10.1021/Ac0498260.CrossRefPubMedGoogle Scholar
  7. Bruins, M., et al. (2009). Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor. European Journal of Clinical Microbiology and Infectious Diseases, 28, 775–780. doi: 10.1007/s10096-009-0700-1.CrossRefPubMedCentralPubMedGoogle Scholar
  8. Bunge, M., et al. (2008). On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Applied and Environmental Microbiology, 74, 2179–2186. doi: 10.1128/aem.02069-07.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Burns, D. A., & Minton, N. P. (2011). Sporulation studies in Clostridium difficile. Journal of Microbiological Methods, 87, 133–138. doi: 10.1016/j.mimet.2011.07.017.CrossRefPubMedGoogle Scholar
  10. Cheknis, A. K., et al. (2009). Distribution of Clostridium difficile strains from a North American, European and Australian trial of treatment for C. difficile infections: 2005-2007. Anaerobe, 15, 230–233. doi: 10.1016/j.anaerobe.2009.09.001.CrossRefPubMedGoogle Scholar
  11. Clements, A. C. A., Magalhaes, R. J. S., Tatem, A. J., Paterson, D. L., & Riley, T. V. (2010). Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. The Lancet Infectious Diseases, 10, 395–404.CrossRefPubMedGoogle Scholar
  12. Dawson, L. F., et al. (2011). The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. BMC Microbiology, 11, 86. doi: 10.1186/1471-2180-11-86.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Elsden, S. R., Hilton, M. G., & Waller, J. M. (1976). End products of metabolism of aromatic amino-acids by clostridia. Archives of Microbiology, 107, 283–288. doi: 10.1007/bf00425340.CrossRefPubMedGoogle Scholar
  14. Freeman, J., et al. (2010). The changing epidemiology of Clostridium difficile infections. Clinical Microbiology Reviews, 23, 529–549. doi: 10.1128/cmr.00082-09.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Garner, C. E., et al. (2007). Volatile organic compounds from faeces and their potential for diagnosis of gastrointestinal disease. The Faseb Journal, 21, 1675–1688. doi: 10.1096/fj.06-6927com.CrossRefGoogle Scholar
  16. Grein, J. D., Ochner, M., Hoang, H., Jin, A., Morgan, M. A., & Murthy, A. R. (2014). Comparison of testing approaches for Clostridium difficile infection at a large community hospital. Clinical Microbiology and Infection, 20, 65–69. doi: 10.1111/1469-0691.12198.CrossRefPubMedGoogle Scholar
  17. Hargreaves, K. R., Colvin, H. V., Patel, K. V., Clokie, J. J. P., & Clokie, M. R. J. (2013). Genetically diverse Clostridium difficile strains harboring abundant prophages in an estuarine environment. Applied and Environmental Microbiology, 79, 6236–6243. doi: 10.1128/aem.01849-13.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Indra, A., et al. (2008). Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. Journal of Medical Microbiology, 57, 1377–1382. doi: 10.1099/jmm.0.47714-0.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., & Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology, 81, 1001–1012. doi: 10.1007/s00253-008-1760-3.CrossRefPubMedGoogle Scholar
  20. Knoop, F. C., Owens, M., & Crocker, I. C. (1993). Clostridium difficile:Clinical disease and diagnosis. Clinical Microbiology Reviews, 6, 251–265.PubMedCentralPubMedGoogle Scholar
  21. Labbe, A. C., et al. (2008). Clostridium difficile infections in a Canadian tertiary care hospital before and during a regional epidemic associated with the BI/NAP1/027 strain. Antimicrobial Agents and Chemotherapy, 52, 3180–3187. doi: 10.1128/aac.00146-08.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Nale, J. Y., Shan, J. Y., Hickenbotham, P. T., Fawley, W. N., Wilcox, M. H., & Clokie, M. R. J. (2012). Diverse temperate bacteriophage carriage in Clostridium difficile 027 Strains. PLoS One, 7, e37263. doi: 10.1371/journal.pone.0037263.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Nunez-Montiel, O. L., Thompson, F. S., & Dowell, V. R. (1983). Norleucine-Tyrosine broth for rapid indetification of Clostridium difficile by gas-liquid-chromatography. Journal of Clinical Microbiology, 17, 382–385.PubMedCentralPubMedGoogle Scholar
  24. Perl, T., et al. (2011). Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry - metabolic profiling by volatile organic compounds. Mycoses, 54, E828–E837. doi: 10.1111/j.1439-0507.2011.02037.x.CrossRefPubMedGoogle Scholar
  25. Phillips, K. D., & Rogers, P. A. (1981). Rapid detection and presumptive indetification of Clostridium difficile by p-cresol production of a selective medium. Journal of Clinical Pathology, 34, 642–644. doi: 10.1136/jcp.34.6.642.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Pons, J. L., Rimbault, A., Darbord, J. C., & Leluan, G. (1985). Gas-Chromatographic mass-spectrometric analysis of volatile amines produced by several strains of Clostridium. Journal of Chromatography, 337, 213–221. doi: 10.1016/0378-4347(85)80034-7.CrossRefPubMedGoogle Scholar
  27. Probert, C. S. J. (2011). Role of faecal gas analysis for the diagnosis of IBD. Biochemical Society Transactions, 39, 1079–1080. doi: 10.1042/bst0391079.CrossRefPubMedGoogle Scholar
  28. Probert, C. S. J., Jones, P. R. H., & Ratcliffe, N. M. (2004). A novel method for rapidly diagnosing the causes of diarrhoea. Gut, 53, 58–61. doi: 10.1136/gut.53.1.58.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Rimbault, A., Niel, P., Darbord, J. C., & Leluan, G. (1986). Headspace gas-chromatographic mass-spectrometric analysis of light-hydrocarbons and voaltile organosulfur compounds in reduced-pressure cultures of Clostridium. Journal of Chromatography, 375, 11–25. doi: 10.1016/s0378-4347(00)83687-7.CrossRefPubMedGoogle Scholar
  30. Scotter, J. M., Allardyce, R. A., Langford, V., Hill, A., & Murdoch, D. R. (2006). The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry (SIFT-MS) and comparison with the BacT/ALERT automated blood culture system. Journal of Microbiological Methods, 65, 628–631. doi: 10.1016/j.mimet.2005.09.016.CrossRefPubMedGoogle Scholar
  31. Settle, C., & Kerr, K. G. (2011). Diarrhoea after broad spectrum antimicrobials. BMJ, 342, d3798–d3798. doi: 10.1136/bmj.d3798.CrossRefPubMedGoogle Scholar
  32. Stabler, R. A., et al. (2012). Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLoS One, 7, e31559. doi: 10.1371/journal.pone.0031559.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Stotzky, G., & Schenck, S. (1976). Volatile organic compounds and microorganisms. Critical Reviews In Microbiology, 4, 333–382. doi: 10.3109/10408417609102303.CrossRefPubMedGoogle Scholar
  34. Tait, E., Perry, J. D., Stanforth, S. P., & Dean, J. R. (2014). Use of volatile compounds as a diagnostic tool for the detection of pathogenic bacteria. TrAc Trends in Analytical Chemistry, 53, 117–125. doi: 10.1016/j.trac.2013.08.011.CrossRefGoogle Scholar
  35. Thorn, R. M. S., Reynolds, D. M., & Greenman, J. (2011). Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. Journal of Microbiological Methods, 84, 258–264. doi: 10.1016/j.mimet.2010.12.001.CrossRefPubMedGoogle Scholar
  36. Varmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in chemometrics. Boca Raton: CRC Press.CrossRefGoogle Scholar
  37. Warny, M., et al. (2005). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. The Lancet, 366, 1079–1084.CrossRefGoogle Scholar
  38. White, I. R., et al. (2013). Real-time multi-marker measurement of organic compounds in human breath: towards fingerprinting breath. Journal of Breath Research, 7, 017112. doi: 10.1088/1752-7155/7/1/017112.CrossRefPubMedGoogle Scholar
  39. Wiegand, P. N., Nathwani, D., Wilcox, M. H., Stephens, J., Shelbaya, A., & Haider, S. (2012). Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. Journal of Hospital Infection, 81, 1–14. doi: 10.1016/j.jhin.2012.02.004.CrossRefPubMedGoogle Scholar
  40. Wilcox, M. H., et al. (2012). Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clinical Infectious Diseases, 55, 1056–1063. doi: 10.1093/cid/cis614.CrossRefPubMedGoogle Scholar
  41. Wyche, K. P., Blake, R. S., Willis, K. A., Monks, P. S., & Ellis, A. M. (2005). Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry. Rapid Communications in Mass Spectrometry, 19, 3356–3362. doi: 10.1002/Rcm.2202.CrossRefPubMedGoogle Scholar
  42. Wyche, K. P., et al. (2007). Technical note: Performance of chemical ionization reaction time-of-flight mass spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds. Atmospheric Chemistry and Physics, 7, 609–620.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Kuppusami
    • 1
  • M. R. J. Clokie
    • 2
  • T. Panayi
    • 2
  • A. M. Ellis
    • 1
  • P. S. Monks
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of LeicesterLeicesterUK
  2. 2.Department of Immunity, Infection and InflammationUniversity of LeicesterLeicesterUK

Personalised recommendations